package trie import ( "bytes" "fmt" "io" "math/bits" "github.com/holiman/uint256" libcommon "github.com/ledgerwatch/erigon-lib/common" length2 "github.com/ledgerwatch/erigon-lib/common/length" "golang.org/x/crypto/sha3" "github.com/ledgerwatch/erigon/common" "github.com/ledgerwatch/erigon/core/types/accounts" "github.com/ledgerwatch/erigon/crypto" "github.com/ledgerwatch/erigon/rlp" "github.com/ledgerwatch/erigon/turbo/rlphacks" ) const hashStackStride = length2.Hash + 1 // + 1 byte for RLP encoding var EmptyCodeHash = crypto.Keccak256Hash(nil) // HashBuilder implements the interface `structInfoReceiver` and opcodes that the structural information of the trie // is comprised of // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure type HashBuilder struct { byteArrayWriter *ByteArrayWriter hashStack []byte // Stack of sub-slices, each 33 bytes each, containing RLP encodings of node hashes (or of nodes themselves, if shorter than 32 bytes) nodeStack []node // Stack of nodes acc accounts.Account // Working account instance (to avoid extra allocations) sha keccakState // Keccak primitive that can absorb data (Write), and get squeezed to the hash out (Read) hashBuf [hashStackStride]byte // RLP representation of hash (or un-hashes value) keyPrefix [1]byte lenPrefix [4]byte valBuf [128]byte // Enough to accommodate hash encoding of any account b [1]byte // Buffer for single byte prefixBuf [8]byte trace bool // Set to true when HashBuilder is required to print trace information for diagnostics topHashesCopy []byte // proofElement is set when the next element computation should have its RLP // encoding retained. Additionally, the account root storage hash and storage // values are stored into this field when set and in the relavent codepath. proofElement *proofElement } // NewHashBuilder creates a new HashBuilder func NewHashBuilder(trace bool) *HashBuilder { return &HashBuilder{ sha: sha3.NewLegacyKeccak256().(keccakState), byteArrayWriter: &ByteArrayWriter{}, trace: trace, } } // Reset makes the HashBuilder suitable for reuse func (hb *HashBuilder) Reset() { if len(hb.hashStack) > 0 { hb.hashStack = hb.hashStack[:0] } if len(hb.nodeStack) > 0 { hb.nodeStack = hb.nodeStack[:0] } hb.topHashesCopy = hb.topHashesCopy[:0] hb.proofElement = nil } // setProofElement sets the proofElement field in which the relevant methods // will check and additionally write the proof bytes to during trie computation. func (hb *HashBuilder) setProofElement(pe *proofElement) { hb.proofElement = pe } func (hb *HashBuilder) leaf(length int, keyHex []byte, val rlphacks.RlpSerializable) error { if hb.trace { fmt.Printf("LEAF %d\n", length) } if length < 0 { return fmt.Errorf("length %d", length) } if hb.proofElement != nil { hb.proofElement.storageKey = common.CopyBytes(keyHex[:len(keyHex)-1]) hb.proofElement.storageValue = new(uint256.Int).SetBytes(val.RawBytes()) } key := keyHex[len(keyHex)-length:] s := &shortNode{Key: common.CopyBytes(key), Val: valueNode(common.CopyBytes(val.RawBytes()))} hb.nodeStack = append(hb.nodeStack, s) if err := hb.leafHashWithKeyVal(key, val); err != nil { return err } copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:]) s.ref.len = hb.hashStack[len(hb.hashStack)-length2.Hash-1] - 0x80 if s.ref.len > 32 { s.ref.len = hb.hashStack[len(hb.hashStack)-length2.Hash-1] - 0xc0 + 1 copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash-1:]) } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } // To be called internally func (hb *HashBuilder) leafHashWithKeyVal(key []byte, val rlphacks.RlpSerializable) error { // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble ni = 1 } } if compactLen > 1 { hb.keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } err := hb.completeLeafHash(kp, kl, compactLen, key, compact0, ni, val) if err != nil { return err } //fmt.Printf("leafHashWithKeyVal [%x]=>[%x]\nHash [%x]\n", key, val, hb.hashBuf[:]) hb.hashStack = append(hb.hashStack, hb.hashBuf[:]...) if len(hb.hashStack) > hashStackStride*len(hb.nodeStack) { hb.nodeStack = append(hb.nodeStack, nil) } return nil } func (hb *HashBuilder) completeLeafHash(kp, kl, compactLen int, key []byte, compact0 byte, ni int, val rlphacks.RlpSerializable) error { totalLen := kp + kl + val.DoubleRLPLen() pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalLen) var writer io.Writer var reader io.Reader if totalLen+pt < length2.Hash { // Embedded node hb.byteArrayWriter.Setup(hb.hashBuf[:], 0) writer = hb.byteArrayWriter } else { hb.sha.Reset() writer = hb.sha reader = hb.sha } // Collect a copy of the hash input if needed for an eth_getProof if hb.proofElement != nil { writer = io.MultiWriter(writer, &hb.proofElement.proof) } if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil { return err } if _, err := writer.Write(hb.keyPrefix[:kp]); err != nil { return err } hb.b[0] = compact0 if _, err := writer.Write(hb.b[:]); err != nil { return err } for i := 1; i < compactLen; i++ { hb.b[0] = key[ni]*16 + key[ni+1] if _, err := writer.Write(hb.b[:]); err != nil { return err } ni += 2 } if err := val.ToDoubleRLP(writer, hb.prefixBuf[:]); err != nil { return err } if reader != nil { hb.hashBuf[0] = 0x80 + length2.Hash if _, err := reader.Read(hb.hashBuf[1:]); err != nil { return err } } return nil } func (hb *HashBuilder) leafHash(length int, keyHex []byte, val rlphacks.RlpSerializable) error { if hb.trace { fmt.Printf("LEAFHASH %d\n", length) } if length < 0 { return fmt.Errorf("length %d", length) } key := keyHex[len(keyHex)-length:] return hb.leafHashWithKeyVal(key, val) } func (hb *HashBuilder) accountLeaf(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldSet uint32, accountCodeSize int) (err error) { if hb.trace { fmt.Printf("ACCOUNTLEAF %d (%b)\n", length, fieldSet) } fullKey := keyHex[:len(keyHex)-1] key := keyHex[len(keyHex)-length:] copy(hb.acc.Root[:], EmptyRoot[:]) copy(hb.acc.CodeHash[:], EmptyCodeHash[:]) hb.acc.Nonce = nonce hb.acc.Balance.Set(balance) hb.acc.Initialised = true hb.acc.Incarnation = incarnation popped := 0 var root node if fieldSet&uint32(4) != 0 { copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride]) if hb.acc.Root != EmptyRoot { // Root is on top of the stack root = hb.nodeStack[len(hb.nodeStack)-popped-1] if root == nil { root = hashNode{hash: common.CopyBytes(hb.acc.Root[:])} } } popped++ } var accountCode codeNode if fieldSet&uint32(8) != 0 { copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride]) var ok bool if !bytes.Equal(hb.acc.CodeHash[:], EmptyCodeHash[:]) { stackTop := hb.nodeStack[len(hb.nodeStack)-popped-1] if stackTop != nil { // if we don't have any stack top it might be okay because we didn't resolve the code yet (stateful resolver) // but if we have something on top of the stack that isn't `nil`, it has to be a codeNode accountCode, ok = stackTop.(codeNode) if !ok { return fmt.Errorf("unexpected node type on the node stack, wanted codeNode, got %T:%s", stackTop, stackTop) } } } popped++ } if hb.proofElement != nil { // The storageRoot is not stored with the account info, therefore // we capture it with the account proof element. Note, we also store the // full key as this root could be for a different account in the negative // case. hb.proofElement.storageRootKey = common.CopyBytes(fullKey) hb.proofElement.storageRoot = hb.acc.Root } var accCopy accounts.Account accCopy.Copy(&hb.acc) if !bytes.Equal(accCopy.CodeHash[:], EmptyCodeHash[:]) && accountCode != nil { accountCodeSize = len(accountCode) } a := &accountNode{accCopy, root, true, accountCode, accountCodeSize} s := &shortNode{Key: common.CopyBytes(key), Val: a} // this invocation will take care of the popping given number of items from both hash stack and node stack, // pushing resulting hash to the hash stack, and nil to the node stack if err = hb.accountLeafHashWithKey(key, popped); err != nil { return err } copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:]) s.ref.len = 32 // Replace top of the stack hb.nodeStack[len(hb.nodeStack)-1] = s if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) accountLeafHash(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldSet uint32) (err error) { if hb.trace { fmt.Printf("ACCOUNTLEAFHASH %d (%b)\n", length, fieldSet) } key := keyHex[len(keyHex)-length:] hb.acc.Nonce = nonce hb.acc.Balance.Set(balance) hb.acc.Initialised = true hb.acc.Incarnation = incarnation popped := 0 if fieldSet&AccountFieldStorageOnly != 0 { copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride]) popped++ } else { copy(hb.acc.Root[:], EmptyRoot[:]) } if fieldSet&AccountFieldCodeOnly != 0 { copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride]) popped++ } else { copy(hb.acc.CodeHash[:], EmptyCodeHash[:]) } return hb.accountLeafHashWithKey(key, popped) } // To be called internally func (hb *HashBuilder) accountLeafHashWithKey(key []byte, popped int) error { // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 48 + key[0] // Odd (1<<4) + first nibble ni = 1 } else { compact0 = 32 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 16 + key[0] // Odd (1<<4) + first nibble ni = 1 } } if compactLen > 1 { hb.keyPrefix[0] = byte(128 + compactLen) kp = 1 kl = compactLen } else { kl = 1 } valLen := hb.acc.EncodingLengthForHashing() hb.acc.EncodeForHashing(hb.valBuf[:]) val := rlphacks.RlpEncodedBytes(hb.valBuf[:valLen]) err := hb.completeLeafHash(kp, kl, compactLen, key, compact0, ni, val) if err != nil { return err } if popped > 0 { hb.hashStack = hb.hashStack[:len(hb.hashStack)-popped*hashStackStride] hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-popped] } //fmt.Printf("accountLeafHashWithKey [%x]=>[%x]\nHash [%x]\n", key, val, hb.hashBuf[:]) hb.hashStack = append(hb.hashStack, hb.hashBuf[:]...) hb.nodeStack = append(hb.nodeStack, nil) if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) extension(key []byte) error { if hb.trace { fmt.Printf("EXTENSION %x\n", key) } nd := hb.nodeStack[len(hb.nodeStack)-1] var s *shortNode switch n := nd.(type) { case nil: branchHash := common.CopyBytes(hb.hashStack[len(hb.hashStack)-length2.Hash:]) s = &shortNode{Key: common.CopyBytes(key), Val: hashNode{hash: branchHash}} case *fullNode: s = &shortNode{Key: common.CopyBytes(key), Val: n} default: return fmt.Errorf("wrong Val type for an extension: %T", nd) } hb.nodeStack[len(hb.nodeStack)-1] = s if err := hb.extensionHash(key); err != nil { return err } copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:]) s.ref.len = 32 if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) extensionHash(key []byte) error { writer := io.Writer(hb.sha) if hb.proofElement != nil { writer = io.MultiWriter(hb.sha, &hb.proofElement.proof) } if hb.trace { fmt.Printf("EXTENSIONHASH %x\n", key) } branchHash := hb.hashStack[len(hb.hashStack)-hashStackStride:] // Compute the total length of binary representation var kp, kl int // Write key var compactLen int var ni int var compact0 byte // https://github.com/ethereum/wiki/wiki/Patricia-Tree#specification-compact-encoding-of-hex-sequence-with-optional-terminator if hasTerm(key) { compactLen = (len(key)-1)/2 + 1 if len(key)&1 == 0 { compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble ni = 1 } else { compact0 = 0x20 } } else { compactLen = len(key)/2 + 1 if len(key)&1 == 1 { compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble ni = 1 } } if compactLen > 1 { hb.keyPrefix[0] = 0x80 + byte(compactLen) kp = 1 kl = compactLen } else { kl = 1 } totalLen := kp + kl + 33 pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalLen) hb.sha.Reset() if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil { return err } if _, err := writer.Write(hb.keyPrefix[:kp]); err != nil { return err } hb.b[0] = compact0 if _, err := writer.Write(hb.b[:]); err != nil { return err } for i := 1; i < compactLen; i++ { hb.b[0] = key[ni]*16 + key[ni+1] if _, err := writer.Write(hb.b[:]); err != nil { return err } ni += 2 } //capture := common.CopyBytes(branchHash[:length2.Hash+1]) if _, err := writer.Write(branchHash[:length2.Hash+1]); err != nil { return err } // Replace previous hash with the new one if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-length2.Hash:]); err != nil { return err } hb.hashStack[len(hb.hashStack)-hashStackStride] = 0x80 + length2.Hash //fmt.Printf("extensionHash [%x]=>[%x]\nHash [%x]\n", key, capture, hb.hashStack[len(hb.hashStack)-hashStackStride:len(hb.hashStack)]) if _, ok := hb.nodeStack[len(hb.nodeStack)-1].(*fullNode); ok { return fmt.Errorf("extensionHash cannot be emitted when a node is on top of the stack") } return nil } func (hb *HashBuilder) branch(set uint16) error { if hb.trace { fmt.Printf("BRANCH (%b)\n", set) } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } f := &fullNode{} digits := bits.OnesCount16(set) if len(hb.nodeStack) < digits { return fmt.Errorf("len(hb.nodeStask) %d < digits %d", len(hb.nodeStack), digits) } nodes := hb.nodeStack[len(hb.nodeStack)-digits:] hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] var i int for digit := uint(0); digit < 16; digit++ { if ((1 << digit) & set) != 0 { if nodes[i] == nil { f.Children[digit] = hashNode{hash: common.CopyBytes(hashes[hashStackStride*i+1 : hashStackStride*(i+1)])} } else { f.Children[digit] = nodes[i] } i++ } } hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1] hb.nodeStack[len(hb.nodeStack)-1] = f if err := hb.branchHash(set); err != nil { return err } copy(f.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:]) f.ref.len = 32 if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) branchHash(set uint16) error { writer := io.Writer(hb.sha) if hb.proofElement != nil { writer = io.MultiWriter(hb.sha, &hb.proofElement.proof) } if hb.trace { fmt.Printf("BRANCHHASH (%b)\n", set) } digits := bits.OnesCount16(set) if len(hb.hashStack) < hashStackStride*digits { return fmt.Errorf("len(hb.hashStack) %d < hashStackStride*digits %d", len(hb.hashStack), hashStackStride*digits) } hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] // Calculate the size of the resulting RLP totalSize := 17 // These are 17 length prefixes var i int for digit := uint(0); digit < 16; digit++ { if ((1 << digit) & set) != 0 { if hashes[hashStackStride*i] == 0x80+length2.Hash { totalSize += length2.Hash } else { // Embedded node totalSize += int(hashes[hashStackStride*i] - rlp.EmptyListCode) } i++ } } hb.sha.Reset() pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalSize) if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil { return err } // Output hasState hashes or embedded RLPs i = 0 //fmt.Printf("branchHash {\n") hb.b[0] = rlp.EmptyStringCode for digit := uint(0); digit < 17; digit++ { if ((1 << digit) & set) != 0 { if hashes[hashStackStride*i] == byte(0x80+length2.Hash) { if _, err := writer.Write(hashes[hashStackStride*i : hashStackStride*i+hashStackStride]); err != nil { return err } //fmt.Printf("%x: [%x]\n", digit, hashes[hashStackStride*i:hashStackStride*i+hashStackStride]) } else { // Embedded node size := int(hashes[hashStackStride*i]) - rlp.EmptyListCode if _, err := writer.Write(hashes[hashStackStride*i : hashStackStride*i+size+1]); err != nil { return err } //fmt.Printf("%x: embedded [%x]\n", digit, hashes[hashStackStride*i:hashStackStride*i+size+1]) } i++ } else { if _, err := writer.Write(hb.b[:]); err != nil { return err } //fmt.Printf("%x: empty\n", digit) } } hb.hashStack = hb.hashStack[:len(hb.hashStack)-hashStackStride*digits+hashStackStride] hb.hashStack[len(hb.hashStack)-hashStackStride] = 0x80 + length2.Hash if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-length2.Hash:]); err != nil { return err } //fmt.Printf("} [%x]\n", hb.hashStack[len(hb.hashStack)-hashStackStride:]) if hashStackStride*len(hb.nodeStack) > len(hb.hashStack) { hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1] hb.nodeStack[len(hb.nodeStack)-1] = nil if hb.trace { fmt.Printf("Setting hb.nodeStack[%d] to nil\n", len(hb.nodeStack)-1) } } if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) hash(hash []byte) error { if hb.trace { fmt.Printf("HASH\n") } hb.hashStack = append(hb.hashStack, 0x80+length2.Hash) hb.hashStack = append(hb.hashStack, hash...) hb.nodeStack = append(hb.nodeStack, nil) if hb.trace { fmt.Printf("Stack depth: %d\n", len(hb.nodeStack)) } return nil } func (hb *HashBuilder) code(code []byte) error { if hb.trace { fmt.Printf("CODE\n") } codeCopy := common.CopyBytes(code) n := codeNode(codeCopy) hb.nodeStack = append(hb.nodeStack, n) hb.sha.Reset() if _, err := hb.sha.Write(codeCopy); err != nil { return err } var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value) hash[0] = 0x80 + length2.Hash if _, err := hb.sha.Read(hash[1:]); err != nil { return err } hb.hashStack = append(hb.hashStack, hash[:]...) return nil } func (hb *HashBuilder) emptyRoot() { if hb.trace { fmt.Printf("EMPTYROOT\n") } hb.nodeStack = append(hb.nodeStack, nil) var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value) hash[0] = 0x80 + length2.Hash copy(hash[1:], EmptyRoot[:]) hb.hashStack = append(hb.hashStack, hash[:]...) } func (hb *HashBuilder) RootHash() (libcommon.Hash, error) { if !hb.hasRoot() { return libcommon.Hash{}, fmt.Errorf("no root in the tree") } return hb.rootHash(), nil } func (hb *HashBuilder) rootHash() libcommon.Hash { var hash libcommon.Hash top := hb.topHash() if len(top) == 33 { copy(hash[:], top[1:]) } else { hb.sha.Reset() if _, err := hb.sha.Write(top); err != nil { panic(err) } if _, err := hb.sha.Read(hash[:]); err != nil { panic(err) } } return hash } func (hb *HashBuilder) topHash() []byte { pos := len(hb.hashStack) - hashStackStride len := hb.hashStack[pos] - 0x80 if len > 32 { // node itself (RLP list), not its hash len = hb.hashStack[pos] - 0xc0 } return hb.hashStack[pos : pos+1+int(len)] } func (hb *HashBuilder) printTopHashes(prefix []byte, _, children uint16) { digits := bits.OnesCount16(children) hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] var i int for digit := uint(0); digit < 16; digit++ { if ((1 << digit) & children) != 0 { fmt.Printf("topHash: %x%02x, %x\n", prefix, digit, hashes[hashStackStride*i+1:hashStackStride*(i+1)]) i++ } } } func (hb *HashBuilder) topHashes(prefix []byte, hasHash, hasState uint16) []byte { digits := bits.OnesCount16(hasState) hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:] hb.topHashesCopy = hb.topHashesCopy[:0] for i := 0; hasHash > 0; hasState, hasHash = hasState>>1, hasHash>>1 { if 1&hasState == 0 { continue } if 1&hasHash != 0 { hb.topHashesCopy = append(hb.topHashesCopy, hashes[hashStackStride*i+1:hashStackStride*(i+1)]...) } i++ } return hb.topHashesCopy } func (hb *HashBuilder) root() node { if hb.trace && len(hb.nodeStack) > 0 { fmt.Printf("len(hb.nodeStack)=%d\n", len(hb.nodeStack)) } return hb.nodeStack[len(hb.nodeStack)-1] } func (hb *HashBuilder) hasRoot() bool { return len(hb.nodeStack) > 0 }