// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package ethapi import ( "errors" "fmt" "math/big" "github.com/holiman/uint256" "github.com/ledgerwatch/erigon/accounts/abi" "github.com/ledgerwatch/erigon/common" "github.com/ledgerwatch/erigon/common/hexutil" "github.com/ledgerwatch/erigon/common/math" "github.com/ledgerwatch/erigon/core" "github.com/ledgerwatch/erigon/core/types" "github.com/ledgerwatch/erigon/core/vm" "github.com/ledgerwatch/log/v3" ) // CallArgs represents the arguments for a call. type CallArgs struct { From *common.Address `json:"from"` To *common.Address `json:"to"` Gas *hexutil.Uint64 `json:"gas"` GasPrice *hexutil.Big `json:"gasPrice"` MaxPriorityFeePerGas *hexutil.Big `json:"maxPriorityFeePerGas"` MaxFeePerGas *hexutil.Big `json:"maxFeePerGas"` Value *hexutil.Big `json:"value"` Nonce *hexutil.Uint64 `json:"nonce"` Data *hexutil.Bytes `json:"data"` AccessList *types.AccessList `json:"accessList"` ChainID *hexutil.Big `json:"chainId,omitempty"` } // from retrieves the transaction sender address. func (arg *CallArgs) from() common.Address { if arg.From == nil { return common.Address{} } return *arg.From } // ToMessage converts CallArgs to the Message type used by the core evm func (args *CallArgs) ToMessage(globalGasCap uint64, baseFee *uint256.Int) (types.Message, error) { // Reject invalid combinations of pre- and post-1559 fee styles if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) { return types.Message{}, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified") } // Set sender address or use zero address if none specified. addr := args.from() // Set default gas & gas price if none were set gas := globalGasCap if gas == 0 { gas = uint64(math.MaxUint64 / 2) } if args.Gas != nil { gas = uint64(*args.Gas) } if globalGasCap != 0 && globalGasCap < gas { log.Warn("Caller gas above allowance, capping", "requested", gas, "cap", globalGasCap) gas = globalGasCap } var ( gasPrice *uint256.Int gasFeeCap *uint256.Int gasTipCap *uint256.Int ) if baseFee == nil { // If there's no basefee, then it must be a non-1559 execution gasPrice = new(uint256.Int) if args.GasPrice != nil { overflow := gasPrice.SetFromBig(args.GasPrice.ToInt()) if overflow { return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1") } } gasFeeCap, gasTipCap = gasPrice, gasPrice } else { // A basefee is provided, necessitating 1559-type execution if args.GasPrice != nil { // User specified the legacy gas field, convert to 1559 gas typing gasPrice = new(uint256.Int) overflow := gasPrice.SetFromBig(args.GasPrice.ToInt()) if overflow { return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1") } gasFeeCap, gasTipCap = gasPrice, gasPrice } else { // User specified 1559 gas feilds (or none), use those gasFeeCap = new(uint256.Int) if args.MaxFeePerGas != nil { overflow := gasFeeCap.SetFromBig(args.MaxFeePerGas.ToInt()) if overflow { return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1") } } gasTipCap = new(uint256.Int) if args.MaxPriorityFeePerGas != nil { overflow := gasTipCap.SetFromBig(args.MaxPriorityFeePerGas.ToInt()) if overflow { return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1") } } // Backfill the legacy gasPrice for EVM execution, unless we're all zeroes gasPrice = new(uint256.Int) if !gasFeeCap.IsZero() || !gasTipCap.IsZero() { gasPrice = math.U256Min(new(uint256.Int).Add(gasTipCap, baseFee), gasFeeCap) } } } value := new(uint256.Int) if args.Value != nil { overflow := value.SetFromBig(args.Value.ToInt()) if overflow { return types.Message{}, fmt.Errorf("args.Value higher than 2^256-1") } } var data []byte if args.Data != nil { data = *args.Data } var accessList types.AccessList if args.AccessList != nil { accessList = *args.AccessList } msg := types.NewMessage(addr, args.To, 0, value, gas, gasPrice, gasFeeCap, gasTipCap, data, accessList, false) return msg, nil } // account indicates the overriding fields of account during the execution of // a message call. // Note, state and stateDiff can't be specified at the same time. If state is // set, message execution will only use the data in the given state. Otherwise // if statDiff is set, all diff will be applied first and then execute the call // message. type Account struct { Nonce *hexutil.Uint64 `json:"nonce"` Code *hexutil.Bytes `json:"code"` Balance **hexutil.Big `json:"balance"` State *map[common.Hash]uint256.Int `json:"state"` StateDiff *map[common.Hash]uint256.Int `json:"stateDiff"` } func NewRevertError(result *core.ExecutionResult) *RevertError { reason, errUnpack := abi.UnpackRevert(result.Revert()) err := errors.New("execution reverted") if errUnpack == nil { err = fmt.Errorf("execution reverted: %v", reason) } return &RevertError{ error: err, reason: hexutil.Encode(result.Revert()), } } // RevertError is an API error that encompassas an EVM revertal with JSON error // code and a binary data blob. type RevertError struct { error reason string // revert reason hex encoded } // ErrorCode returns the JSON error code for a revertal. // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal func (e *RevertError) ErrorCode() int { return 3 } // ErrorData returns the hex encoded revert reason. func (e *RevertError) ErrorData() interface{} { return e.reason } // ExecutionResult groups all structured logs emitted by the EVM // while replaying a transaction in debug mode as well as transaction // execution status, the amount of gas used and the return value type ExecutionResult struct { Gas uint64 `json:"gas"` Failed bool `json:"failed"` ReturnValue string `json:"returnValue"` StructLogs []StructLogRes `json:"structLogs"` } // StructLogRes stores a structured log emitted by the EVM while replaying a // transaction in debug mode type StructLogRes struct { Pc uint64 `json:"pc"` Op string `json:"op"` Gas uint64 `json:"gas"` GasCost uint64 `json:"gasCost"` Depth int `json:"depth"` Error error `json:"error,omitempty"` Stack *[]string `json:"stack,omitempty"` Memory *[]string `json:"memory,omitempty"` Storage *map[string]string `json:"storage,omitempty"` } // FormatLogs formats EVM returned structured logs for json output func FormatLogs(logs []vm.StructLog) []StructLogRes { formatted := make([]StructLogRes, len(logs)) for index, trace := range logs { formatted[index] = StructLogRes{ Pc: trace.Pc, Op: trace.Op.String(), Gas: trace.Gas, GasCost: trace.GasCost, Depth: trace.Depth, Error: trace.Err, } if trace.Stack != nil { stack := make([]string, len(trace.Stack)) for i, stackValue := range trace.Stack { stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32)) } formatted[index].Stack = &stack } if trace.Memory != nil { memory := make([]string, 0, (len(trace.Memory)+31)/32) for i := 0; i+32 <= len(trace.Memory); i += 32 { memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32])) } formatted[index].Memory = &memory } if trace.Storage != nil { storage := make(map[string]string) for i, storageValue := range trace.Storage { storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue) } formatted[index].Storage = &storage } } return formatted } // RPCMarshalHeader converts the given header to the RPC output . func RPCMarshalHeader(head *types.Header) map[string]interface{} { result := map[string]interface{}{ "number": (*hexutil.Big)(head.Number), "hash": head.Hash(), "parentHash": head.ParentHash, "nonce": head.Nonce, "mixHash": head.MixDigest, "sha3Uncles": head.UncleHash, "logsBloom": head.Bloom, "stateRoot": head.Root, "miner": head.Coinbase, "difficulty": (*hexutil.Big)(head.Difficulty), "extraData": hexutil.Bytes(head.Extra), "size": hexutil.Uint64(head.Size()), "gasLimit": hexutil.Uint64(head.GasLimit), "gasUsed": hexutil.Uint64(head.GasUsed), "timestamp": hexutil.Uint64(head.Time), "transactionsRoot": head.TxHash, "receiptsRoot": head.ReceiptHash, } if head.BaseFee != nil { result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee) } return result } // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain // transaction hashes. func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { fields := RPCMarshalHeader(block.Header()) fields["size"] = hexutil.Uint64(block.Size()) if inclTx { formatTx := func(tx types.Transaction) (interface{}, error) { return tx.Hash(), nil } if fullTx { formatTx = func(tx types.Transaction) (interface{}, error) { return newRPCTransactionFromBlockHash(block, tx.Hash()), nil } } txs := block.Transactions() transactions := make([]interface{}, len(txs)) var err error for i, tx := range txs { if transactions[i], err = formatTx(tx); err != nil { return nil, err } } fields["transactions"] = transactions } uncles := block.Uncles() uncleHashes := make([]common.Hash, len(uncles)) for i, uncle := range uncles { uncleHashes[i] = uncle.Hash() } fields["uncles"] = uncleHashes return fields, nil } /* // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires // a `PublicBlockchainAPI`. func (s *PublicBlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} { fields := RPCMarshalHeader(header) fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash())) return fields } // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires // a `PublicBlockchainAPI`. func (s *PublicBlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { fields, err := RPCMarshalBlock(b, inclTx, fullTx) if err != nil { return nil, err } if inclTx { fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash())) } return fields, err } */ // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction type RPCTransaction struct { BlockHash *common.Hash `json:"blockHash"` BlockNumber *hexutil.Big `json:"blockNumber"` From common.Address `json:"from"` Gas hexutil.Uint64 `json:"gas"` GasPrice *hexutil.Big `json:"gasPrice,omitempty"` Tip *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"` FeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"` Hash common.Hash `json:"hash"` Input hexutil.Bytes `json:"input"` Nonce hexutil.Uint64 `json:"nonce"` To *common.Address `json:"to"` TransactionIndex *hexutil.Uint64 `json:"transactionIndex"` Value *hexutil.Big `json:"value"` Type hexutil.Uint64 `json:"type"` Accesses *types.AccessList `json:"accessList,omitempty"` ChainID *hexutil.Big `json:"chainId,omitempty"` V *hexutil.Big `json:"v"` R *hexutil.Big `json:"r"` S *hexutil.Big `json:"s"` } // newRPCTransaction returns a transaction that will serialize to the RPC // representation, with the given location metadata set (if available). func newRPCTransaction(tx types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64, baseFee *big.Int) *RPCTransaction { // Determine the signer. For replay-protected transactions, use the most permissive // signer, because we assume that signers are backwards-compatible with old // transactions. For non-protected transactions, the homestead signer signer is used // because the return value of ChainId is zero for those transactions. chainId := uint256.NewInt(0) result := &RPCTransaction{ Type: hexutil.Uint64(tx.Type()), Gas: hexutil.Uint64(tx.GetGas()), Hash: tx.Hash(), Input: hexutil.Bytes(tx.GetData()), Nonce: hexutil.Uint64(tx.GetNonce()), To: tx.GetTo(), Value: (*hexutil.Big)(tx.GetValue().ToBig()), } switch t := tx.(type) { case *types.LegacyTx: chainId = types.DeriveChainId(&t.V) result.ChainID = (*hexutil.Big)(chainId.ToBig()) result.GasPrice = (*hexutil.Big)(t.GasPrice.ToBig()) result.V = (*hexutil.Big)(t.V.ToBig()) result.R = (*hexutil.Big)(t.R.ToBig()) result.S = (*hexutil.Big)(t.S.ToBig()) case *types.AccessListTx: chainId.Set(t.ChainID) result.ChainID = (*hexutil.Big)(chainId.ToBig()) result.GasPrice = (*hexutil.Big)(t.GasPrice.ToBig()) result.V = (*hexutil.Big)(t.V.ToBig()) result.R = (*hexutil.Big)(t.R.ToBig()) result.S = (*hexutil.Big)(t.S.ToBig()) if len(t.AccessList) > 0 { result.Accesses = &t.AccessList } case *types.DynamicFeeTransaction: chainId.Set(t.ChainID) result.ChainID = (*hexutil.Big)(chainId.ToBig()) result.Tip = (*hexutil.Big)(t.Tip.ToBig()) result.FeeCap = (*hexutil.Big)(t.FeeCap.ToBig()) result.V = (*hexutil.Big)(t.V.ToBig()) result.R = (*hexutil.Big)(t.R.ToBig()) result.S = (*hexutil.Big)(t.S.ToBig()) if len(t.AccessList) > 0 { result.Accesses = &t.AccessList } // if the transaction has been mined, compute the effective gas price if baseFee != nil && blockHash != (common.Hash{}) { // price = min(tip, gasFeeCap - baseFee) + baseFee price := math.BigMin(new(big.Int).Add(t.Tip.ToBig(), baseFee), t.FeeCap.ToBig()) result.GasPrice = (*hexutil.Big)(price) } else { result.GasPrice = nil } } signer := types.LatestSignerForChainID(chainId.ToBig()) var err error result.From, err = tx.Sender(*signer) if err != nil { log.Warn("sender recovery", "err", err) } if blockHash != (common.Hash{}) { result.BlockHash = &blockHash result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) result.TransactionIndex = (*hexutil.Uint64)(&index) } return result } /* // newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation func newRPCPendingTransaction(tx types.Transaction) *RPCTransaction { return newRPCTransaction(tx, common.Hash{}, 0, 0) } */ // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation. func newRPCTransactionFromBlockIndex(b *types.Block, index uint64) *RPCTransaction { txs := b.Transactions() if index >= uint64(len(txs)) { return nil } return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index, b.BaseFee()) } /* // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index. func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes { txs := b.Transactions() if index >= uint64(len(txs)) { return nil } var blob bytes.Buffer if txs[index].Type() != types.LegacyTxType { if err := blob.WriteByte(txs[index].Type()); err != nil { panic(err) } } if err := rlp.Encode(&blob, txs[index]); err != nil { panic(err) } return blob.Bytes() } */ // newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation. func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash) *RPCTransaction { for idx, tx := range b.Transactions() { if tx.Hash() == hash { return newRPCTransactionFromBlockIndex(b, uint64(idx)) } } return nil } /* // PublicTransactionPoolAPI exposes methods for the RPC interface type PublicTransactionPoolAPI struct { b Backend nonceLock *AddrLocker signer *types.Signer } // NewPublicTransactionPoolAPI creates a new RPC service with methods specific for the transaction pool. func NewPublicTransactionPoolAPI(b Backend, nonceLock *AddrLocker) *PublicTransactionPoolAPI { // The signer used by the API should always be the 'latest' known one because we expect // signers to be backwards-compatible with old transactions. signer := types.LatestSigner(b.ChainConfig()) return &PublicTransactionPoolAPI{b, nonceLock, signer} } // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number. func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { n := hexutil.Uint(len(block.Transactions())) return &n } return nil } // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash. func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { n := hexutil.Uint(len(block.Transactions())) return &n } return nil } // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index. func (s *PublicTransactionPoolAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { return newRPCTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index. func (s *PublicTransactionPoolAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { return newRPCTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index. func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { return newRPCRawTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index. func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { return newRPCRawTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetTransactionCount returns the number of transactions the given address has sent for the given block number func (s *PublicTransactionPoolAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) { // Ask transaction pool for the nonce which includes pending transactions if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber { nonce, err := s.b.GetPoolNonce(ctx, address) if err != nil { return nil, err } return (*hexutil.Uint64)(&nonce), nil } // Resolve block number and use its state to ask for the nonce state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } nonce := state.GetNonce(address) return (*hexutil.Uint64)(&nonce), state.Error() } // GetTransactionByHash returns the transaction for the given hash func (s *PublicTransactionPoolAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) { // Try to return an already finalized transaction tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, err } if tx != nil { return newRPCTransaction(tx, blockHash, blockNumber, index), nil } // No finalized transaction, try to retrieve it from the pool if tx := s.b.GetPoolTransaction(hash); tx != nil { return newRPCPendingTransaction(tx), nil } // Transaction unknown, return as such return nil, nil } // GetRawTransactionByHash returns the bytes of the transaction for the given hash. func (s *PublicTransactionPoolAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { // Retrieve a finalized transaction, or a pooled otherwise tx, _, _, _, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, err } if tx == nil { if tx = s.b.GetPoolTransaction(hash); tx == nil { // Transaction not found anywhere, abort return nil, nil } } // Serialize to RLP and return var blob bytes.Buffer if tx.Type() != types.LegacyTxType { if err := blob.WriteByte(tx.Type()); err != nil { return nil, err } } if err := rlp.Encode(&blob, tx); err != nil { return nil, err } return blob.Bytes(), nil } // GetTransactionReceipt returns the transaction receipt for the given transaction hash. func (s *PublicTransactionPoolAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) { tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, nil } receipts, err := s.b.GetReceipts(ctx, blockHash) if err != nil { return nil, err } if len(receipts) <= int(index) { return nil, nil } receipt := receipts[index] // Derive the sender. signer := types.MakeSigner(s.b.ChainConfig(), blockNumber) from, _ := tx.Sender(*signer) fields := map[string]interface{}{ "blockHash": blockHash, "blockNumber": hexutil.Uint64(blockNumber), "transactionHash": hash, "transactionIndex": hexutil.Uint64(index), "from": from, "to": tx.GetTo(), "gasUsed": hexutil.Uint64(receipt.GasUsed), "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed), "contractAddress": nil, "logs": receipt.Logs, "logsBloom": receipt.Bloom, "type": hexutil.Uint(tx.Type()), } // Assign receipt status or post state. if len(receipt.PostState) > 0 { fields["root"] = hexutil.Bytes(receipt.PostState) } else { fields["status"] = hexutil.Uint(receipt.Status) } if receipt.Logs == nil { fields["logs"] = [][]*types.Log{} } // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation if receipt.ContractAddress != (common.Address{}) { fields["contractAddress"] = receipt.ContractAddress } return fields, nil } // SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool. type SendTxArgs struct { From common.Address `json:"from"` To *common.Address `json:"to"` Gas *hexutil.Uint64 `json:"gas"` GasPrice *hexutil.Big `json:"gasPrice"` MaxPriorityFeePerGas *hexutil.Big `json:"tip"` MaxFeePerGas *hexutil.Big `json:"feeCap"` Value *hexutil.Big `json:"value"` Nonce *hexutil.Uint64 `json:"nonce"` // We accept "data" and "input" for backwards-compatibility reasons. "input" is the // newer name and should be preferred by clients. Data *hexutil.Bytes `json:"data"` Input *hexutil.Bytes `json:"input"` // For non-legacy transactions AccessList *types.AccessList `json:"accessList,omitempty"` ChainID *hexutil.Big `json:"chainId,omitempty"` } // setDefaults fills in default values for unspecified tx fields. func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error { if args.GasPrice == nil { price, err := b.SuggestPrice(ctx) if err != nil { return err } args.GasPrice = (*hexutil.Big)(price) } if args.Value == nil { args.Value = new(hexutil.Big) } if args.Nonce == nil { nonce, err := b.GetPoolNonce(ctx, args.From) if err != nil { return err } args.Nonce = (*hexutil.Uint64)(&nonce) } if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) { return errors.New(`both "data" and "input" are set and not equal. Please use "input" to pass transaction call data`) } if args.To == nil { // Contract creation var input []byte if args.Data != nil { input = *args.Data } else if args.Input != nil { input = *args.Input } if len(input) == 0 { return errors.New(`contract creation without any data provided`) } } // Estimate the gas usage if necessary. if args.Gas == nil { // For backwards-compatibility reason, we try both input and data // but input is preferred. input := args.Input if input == nil { input = args.Data } callArgs := CallArgs{ From: &args.From, // From shouldn't be nil To: args.To, GasPrice: args.GasPrice, Value: args.Value, Data: input, AccessList: args.AccessList, } pendingBlockNr := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) estimated, err := DoEstimateGas(ctx, b, callArgs, pendingBlockNr, b.RPCGasCap()) if err != nil { return err } args.Gas = &estimated log.Trace("Estimate gas usage automatically", "gas", args.Gas) } if args.ChainID == nil { id := (*hexutil.Big)(b.ChainConfig().ChainID) args.ChainID = id } return nil } // toTransaction converts the arguments to a transaction. // This assumes that setDefaults has been called. func (args *SendTxArgs) toTransaction() types.Transaction { var input []byte if args.Input != nil { input = *args.Input } else if args.Data != nil { input = *args.Data } var tx types.Transaction gasPrice, _ := uint256.FromBig((*big.Int)(args.GasPrice)) value, _ := uint256.FromBig((*big.Int)(args.Value)) if args.AccessList == nil { tx = &types.LegacyTx{ CommonTx: types.CommonTx{ To: args.To, Nonce: uint64(*args.Nonce), Gas: uint64(*args.Gas), Value: value, Data: input, }, GasPrice: gasPrice, } } else { chainId, _ := uint256.FromBig((*big.Int)(args.ChainID)) if args.MaxFeePerGas == nil { tx = &types.AccessListTx{ LegacyTx: types.LegacyTx{ CommonTx: types.CommonTx{ To: args.To, Nonce: uint64(*args.Nonce), Gas: uint64(*args.Gas), Value: value, Data: input, }, GasPrice: gasPrice, }, ChainID: chainId, AccessList: *args.AccessList, } } else { tip, _ := uint256.FromBig((*big.Int)(args.MaxPriorityFeePerGas)) feeCap, _ := uint256.FromBig((*big.Int)(args.MaxFeePerGas)) tx = &types.DynamicFeeTransaction{ CommonTx: types.CommonTx{ To: args.To, Nonce: uint64(*args.Nonce), Gas: uint64(*args.Gas), Value: value, Data: input, }, MaxPriorityFeePerGas: tip, MaxFeePerGas: feeCap, ChainID: chainId, AccessList: *args.AccessList, } } } return tx } // SubmitTransaction is a helper function that submits tx to txPool and logs a message. func SubmitTransaction(ctx context.Context, b Backend, tx types.Transaction) (common.Hash, error) { // If the transaction fee cap is already specified, ensure the // fee of the given transaction is _reasonable_. if err := checkTxFee(tx.GetPrice().ToBig(), tx.GetGas(), b.RPCTxFeeCap()); err != nil { return common.Hash{}, err } if !b.UnprotectedAllowed() && !tx.Protected() { // Ensure only eip155 signed transactions are submitted if EIP155Required is set. return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC") } if err := b.SendTx(ctx, tx); err != nil { return common.Hash{}, err } // Print a log with full tx details for manual investigations and interventions signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number().Uint64()) from, err := tx.Sender(*signer) if err != nil { return common.Hash{}, err } if tx.GetTo() == nil { addr := crypto.CreateAddress(from, tx.GetNonce()) log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.GetNonce(), "contract", addr.Hex(), "value", tx.GetValue()) } else { log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.GetNonce(), "recipient", tx.GetTo(), "value", tx.GetValue()) } return tx.Hash(), nil } // FillTransaction fills the defaults (nonce, gas, gasPrice) on a given unsigned transaction, // and returns it to the caller for further processing (signing + broadcast) func (s *PublicTransactionPoolAPI) FillTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) { // Set some sanity defaults and terminate on failure if err := args.setDefaults(ctx, s.b); err != nil { return nil, err } // Assemble the transaction and obtain rlp tx := args.toTransaction() var blob bytes.Buffer if tx.Type() != types.LegacyTxType { if err := blob.WriteByte(tx.Type()); err != nil { return nil, err } } if err := rlp.Encode(&blob, tx); err != nil { return nil, err } return &SignTransactionResult{blob.Bytes(), tx}, nil } // SendRawTransaction will add the signed transaction to the transaction pool. // The sender is responsible for signing the transaction and using the correct nonce. func (s *PublicTransactionPoolAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) { tx, err := types.DecodeTransaction(rlp.NewStream(bytes.NewReader(input), 0)) if err != nil { return common.Hash{}, err } return SubmitTransaction(ctx, s.b, tx) } // SignTransactionResult represents a RLP encoded signed transaction. type SignTransactionResult struct { Raw hexutil.Bytes `json:"raw"` Tx types.Transaction `json:"tx"` } // PublicDebugAPI is the collection of Ethereum APIs exposed over the public // debugging endpoint. type PublicDebugAPI struct { b Backend } // NewPublicDebugAPI creates a new API definition for the public debug methods // of the Ethereum service. func NewPublicDebugAPI(b Backend) *PublicDebugAPI { return &PublicDebugAPI{b: b} } // GetBlockRlp retrieves the RLP encoded for of a single block. func (api *PublicDebugAPI) GetBlockRlp(ctx context.Context, number uint64) (string, error) { block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) if block == nil { return "", fmt.Errorf("block #%d not found", number) } encoded, err := rlp.EncodeToBytes(block) if err != nil { return "", err } return fmt.Sprintf("%x", encoded), nil } // PrintBlock retrieves a block and returns its pretty printed form. func (api *PublicDebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) { block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) if block == nil { return "", fmt.Errorf("block #%d not found", number) } return spew.Sdump(block), nil } // SeedHash retrieves the seed hash of a block. func (api *PublicDebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) { block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) if block == nil { return "", fmt.Errorf("block #%d not found", number) } return fmt.Sprintf("0x%x", ethash.SeedHash(number)), nil } // PrivateDebugAPI is the collection of Ethereum APIs exposed over the private // debugging endpoint. type PrivateDebugAPI struct { b Backend } // NewPrivateDebugAPI creates a new API definition for the private debug methods // of the Ethereum service. func NewPrivateDebugAPI(b Backend) *PrivateDebugAPI { return &PrivateDebugAPI{b: b} } // ChaindbProperty returns properties of the chain database. func (api *PrivateDebugAPI) ChaindbProperty(property string) (string, error) { return "N/A", nil } // ChaindbCompact flattens the entire key-value database into a single level, // removing all unused slots and merging all keys. func (api *PrivateDebugAPI) ChaindbCompact() error { // Intentionally disabled in Erigon return nil } // SetHead rewinds the head of the blockchain to a previous block. func (api *PrivateDebugAPI) SetHead(number hexutil.Uint64) { api.b.SetHead(uint64(number)) } // PublicNetAPI offers network related RPC methods type PublicNetAPI struct { net *p2p.Server networkVersion uint64 } // NewPublicNetAPI creates a new net API instance. func NewPublicNetAPI(net *p2p.Server, networkVersion uint64) *PublicNetAPI { return &PublicNetAPI{net, networkVersion} } // Listening returns an indication if the node is listening for network connections. func (s *PublicNetAPI) Listening() bool { return true // always listening } // PeerCount returns the number of connected peers func (s *PublicNetAPI) PeerCount() hexutil.Uint { return hexutil.Uint(s.net.PeerCount()) } // Version returns the current ethereum protocol version. func (s *PublicNetAPI) Version() string { return fmt.Sprintf("%d", s.networkVersion) } // checkTxFee is an internal function used to check whether the fee of // the given transaction is _reasonable_(under the cap). func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error { // Short circuit if there is no cap for transaction fee at all. if cap == 0 { return nil } feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether))) feeFloat, _ := feeEth.Float64() if feeFloat > cap { return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap) } return nil } */