// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "io" "reflect" "runtime" "sync" "time" "github.com/VictoriaMetrics/fastcache" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/metrics" "github.com/ledgerwatch/turbo-geth/rlp" ) var ( memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil) memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil) memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil) memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil) memcacheDirtyHitMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil) //nolint:deadcode,varcheck,unused memcacheDirtyMissMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil) //nolint:deadcode,varcheck,unused memcacheDirtyReadMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil) //nolint:deadcode,varcheck,unused memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil) //nolint:deadcode,varcheck,unused memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil) memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil) memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil) memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil) memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil) memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil) memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil) memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil) memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil) ) // DatabaseReader wraps the Get method of a backing store for the trie. type DatabaseReader interface { // Get retrieves the value associated with key from the database. Get(bucket, key []byte) (value []byte, err error) GetAsOf(bucket, hBucket, key []byte, timestamp uint64) ([]byte, error) // Has retrieves whether a key is present in the database. Has(bucket, key []byte) (bool, error) Walk(bucket, key []byte, keybits uint, walker func([]byte, []byte) (bool, error)) error } // Database is an intermediate write layer between the trie data structures and // the disk database. The aim is to accumulate trie writes in-memory and only // periodically flush a couple tries to disk, garbage collecting the remainder. // // Note, the trie Database is **not** thread safe in its mutations, but it **is** // thread safe in providing individual, independent node access. The rationale // behind this split design is to provide read access to RPC handlers and sync // servers even while the trie is executing expensive garbage collection. type Database struct { diskdb ethdb.Database // Persistent storage for matured trie nodes cleans *fastcache.Cache // GC friendly memory cache of clean node RLPs dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes oldest common.Hash // Oldest tracked node, flush-list head newest common.Hash // Newest tracked node, flush-list tail preimages map[common.Hash][]byte // Preimages of nodes from the secure trie gctime time.Duration // Time spent on garbage collection since last commit gcnodes uint64 // Nodes garbage collected since last commit gcsize common.StorageSize // Data storage garbage collected since last commit flushtime time.Duration // Time spent on data flushing since last commit flushnodes uint64 // Nodes flushed since last commit flushsize common.StorageSize // Data storage flushed since last commit dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata) childrenSize common.StorageSize // Storage size of the external children tracking preimagesSize common.StorageSize // Storage size of the preimages cache lock sync.RWMutex } // rawNode is a simple binary blob used to differentiate between collapsed trie // nodes and already encoded RLP binary blobs (while at the same time store them // in the same cache fields). type rawNode []byte func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } // rawFullNode represents only the useful data content of a full node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawFullNode [17]node func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") } func (n rawFullNode) EncodeRLP(w io.Writer) error { var nodes [17]node for i, child := range n { if child != nil { nodes[i] = child } else { nodes[i] = nilValueNode } } return rlp.Encode(w, nodes) } // rawShortNode represents only the useful data content of a short node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawShortNode struct { Key []byte Val node } func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") } // cachedNode is all the information we know about a single cached node in the // memory database write layer. type cachedNode struct { node node // Cached collapsed trie node, or raw rlp data size uint16 // Byte size of the useful cached data parents uint32 // Number of live nodes referencing this one children map[common.Hash]uint16 // External children referenced by this node flushPrev common.Hash // Previous node in the flush-list flushNext common.Hash // Next node in the flush-list } // cachedNodeSize is the raw size of a cachedNode data structure without any // node data included. It's an approximate size, but should be a lot better // than not counting them. var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size()) // cachedNodeChildrenSize is the raw size of an initialized but empty external // reference map. const cachedNodeChildrenSize = 48 // rlp returns the raw rlp encoded blob of the cached node, either directly from // the cache, or by regenerating it from the collapsed node. func (n *cachedNode) rlp() []byte { return nil } // obj returns the decoded and expanded trie node, either directly from the cache, // or by regenerating it from the rlp encoded blob. func (n *cachedNode) obj(hash common.Hash, cachegen uint16) node { // FIXME: whu is this not implemented? return nil } // childs returns all the tracked children of this node, both the implicit ones // from inside the node as well as the explicit ones from outside the node. func (n *cachedNode) forChilds(onChild func(hash common.Hash)) { // FIXME: why is this method does nothing? } // gatherChildj // retrieves all the hashnode children. func gatherChildren(n node, children *[]common.Hash) { // intentinally left blank to simplify further rebasing } // simplifyNode traverses the hierarchy of an expanded memory node and discards // all the internal caches, returning a node that only contains the raw data. func simplifyNode(n node) node { return nil } // expandNode traverses the node hierarchy of a collapsed storage node and converts // all fields and keys into expanded memory form. func expandNode(hash hashNode, n node, cachegen uint16) node { // FIXME: Intentionally? does nothing in TurboGeth return nil } // NewDatabase creates a new trie database to store ephemeral trie content before // its written out to disk or garbage collected. No read cache is created, so all // data retrievals will hit the underlying disk database. func NewDatabase(diskdb ethdb.Database) *Database { return NewDatabaseWithCache(diskdb, 0, "") } // NewDatabaseWithCache creates a new trie database to store ephemeral trie content // before its written out to disk or garbage collected. It also acts as a read cache // for nodes loaded from disk. func NewDatabaseWithCache(diskdb ethdb.Database, cache int, journal string) *Database { var cleans *fastcache.Cache if cache > 0 { if journal == "" { cleans = fastcache.New(cache * 1024 * 1024) } else { cleans = fastcache.LoadFromFileOrNew(journal, cache*1024*1024) } } return &Database{ diskdb: diskdb, cleans: cleans, dirties: map[common.Hash]*cachedNode{{}: { children: make(map[common.Hash]uint16), }}, preimages: make(map[common.Hash][]byte), } } // DiskDB retrieves the persistent storage backing the trie database. // FIXME: maybe a more restrictive interface? func (db *Database) DiskDB() ethdb.Database { return db.diskdb } // InsertBlob writes a new reference tracked blob to the memory database if it's // yet unknown. This method should only be used for non-trie nodes that require // reference counting, since trie nodes are garbage collected directly through // their embedded children. func (db *Database) InsertBlob(hash common.Hash, blob []byte) { // Turbo-Geth: Intentionally left blank } // insertPreimage writes a new trie node pre-image to the memory database if it's // yet unknown. The method will NOT make a copy of the slice, // only use if the preimage will NOT be changed later on. // // Note, this method assumes that the database's lock is held! func (db *Database) insertPreimage(hash common.Hash, preimage []byte) { if _, ok := db.preimages[hash]; ok { return } db.preimages[hash] = preimage db.preimagesSize += common.StorageSize(common.HashLength + len(preimage)) } // Nodes retrieves the hashes of all the nodes cached within the memory database. // This method is extremely expensive and should only be used to validate internal // states in test code. func (db *Database) Nodes() []common.Hash { db.lock.RLock() defer db.lock.RUnlock() var hashes = make([]common.Hash, 0, len(db.dirties)) for hash := range db.dirties { if hash != (common.Hash{}) { // Special case for "root" references/nodes hashes = append(hashes, hash) } } return hashes } // Reference adds a new reference from a parent node to a child node. func (db *Database) Reference(child common.Hash, parent common.Hash) { db.lock.Lock() defer db.lock.Unlock() db.reference(child, parent) } // reference is the private locked version of Reference. func (db *Database) reference(child common.Hash, parent common.Hash) { // If the node does not exist, it's a node pulled from disk, skip node, ok := db.dirties[child] if !ok { return } // If the reference already exists, only duplicate for roots if db.dirties[parent].children == nil { db.dirties[parent].children = make(map[common.Hash]uint16) db.childrenSize += cachedNodeChildrenSize } else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) { return } node.parents++ db.dirties[parent].children[child]++ if db.dirties[parent].children[child] == 1 { db.childrenSize += common.HashLength + 2 // uint16 counter } } // Dereference removes an existing reference from a root node. func (db *Database) Dereference(root common.Hash) { // Sanity check to ensure that the meta-root is not removed if root == (common.Hash{}) { log.Error("Attempted to dereference the trie cache meta root") return } db.lock.Lock() defer db.lock.Unlock() nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() db.dereference(root, common.Hash{}) db.gcnodes += uint64(nodes - len(db.dirties)) db.gcsize += storage - db.dirtiesSize db.gctime += time.Since(start) memcacheGCTimeTimer.Update(time.Since(start)) memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize)) memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties))) log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) } // dereference is the private locked version of Dereference. func (db *Database) dereference(child common.Hash, parent common.Hash) { // Dereference the parent-child node := db.dirties[parent] if node.children != nil && node.children[child] > 0 { node.children[child]-- if node.children[child] == 0 { delete(node.children, child) db.childrenSize -= (common.HashLength + 2) // uint16 counter } } // If the child does not exist, it's a previously committed node. node, ok := db.dirties[child] if !ok { return } // If there are no more references to the child, delete it and cascade if node.parents > 0 { // This is a special cornercase where a node loaded from disk (i.e. not in the // memcache any more) gets reinjected as a new node (short node split into full, // then reverted into short), causing a cached node to have no parents. That is // no problem in itself, but don't make maxint parents out of it. node.parents-- } if node.parents == 0 { // Remove the node from the flush-list switch child { case db.oldest: db.oldest = node.flushNext db.dirties[node.flushNext].flushPrev = common.Hash{} case db.newest: db.newest = node.flushPrev db.dirties[node.flushPrev].flushNext = common.Hash{} default: db.dirties[node.flushPrev].flushNext = node.flushNext db.dirties[node.flushNext].flushPrev = node.flushPrev } // Dereference all children and delete the node node.forChilds(func(hash common.Hash) { db.dereference(hash, child) }) delete(db.dirties, child) db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { db.childrenSize -= cachedNodeChildrenSize } } } // Cap iteratively flushes old but still referenced trie nodes until the total // memory usage goes below the given threshold. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Cap(limit common.StorageSize) error { // Intentionally disabled in Turbo-Geth // FIXME: Add more detailed explanation or remove the methid completely return nil } // Commit iterates over all the children of a particular node, writes them out // to disk, forcefully tearing down all references in both directions. As a side // effect, all pre-images accumulated up to this point are also written. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Commit(node common.Hash, report bool) error { // Intentionally disabled in Turbo-Geth // FIXME: Add more detailed explanation or remove the methid completely return nil } // cleaner is a database batch replayer that takes a batch of write operations // and cleans up the trie database from anything written to disk. type cleaner struct { db *Database } // Put reacts to database writes and implements dirty data uncaching. This is the // post-processing step of a commit operation where the already persisted trie is // removed from the dirty cache and moved into the clean cache. The reason behind // the two-phase commit is to ensure ensure data availability while moving from // memory to disk. func (c *cleaner) Put(key []byte, rlp []byte) error { hash := common.BytesToHash(key) // If the node does not exist, we're done on this path node, ok := c.db.dirties[hash] if !ok { return nil } // Node still exists, remove it from the flush-list switch hash { case c.db.oldest: c.db.oldest = node.flushNext c.db.dirties[node.flushNext].flushPrev = common.Hash{} case c.db.newest: c.db.newest = node.flushPrev c.db.dirties[node.flushPrev].flushNext = common.Hash{} default: c.db.dirties[node.flushPrev].flushNext = node.flushNext c.db.dirties[node.flushNext].flushPrev = node.flushPrev } // Remove the node from the dirty cache delete(c.db.dirties, hash) c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) } // Move the flushed node into the clean cache to prevent insta-reloads if c.db.cleans != nil { c.db.cleans.Set(hash[:], rlp) memcacheCleanWriteMeter.Mark(int64(len(rlp))) } return nil } func (c *cleaner) Delete(key []byte) error { panic("not implemented") } // Size returns the current storage size of the memory cache in front of the // persistent database layer. func (db *Database) Size() (common.StorageSize, common.StorageSize) { db.lock.RLock() defer db.lock.RUnlock() // db.dirtiesSize only contains the useful data in the cache, but when reporting // the total memory consumption, the maintenance metadata is also needed to be // counted. var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize) var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2)) return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize } // saveCache saves clean state cache to given directory path // using specified CPU cores. func (db *Database) saveCache(dir string, threads int) error { if db.cleans == nil { return nil } log.Info("Writing clean trie cache to disk", "path", dir, "threads", threads) start := time.Now() err := db.cleans.SaveToFileConcurrent(dir, threads) if err != nil { log.Error("Failed to persist clean trie cache", "error", err) return err } log.Info("Persisted the clean trie cache", "path", dir, "elapsed", common.PrettyDuration(time.Since(start))) return nil } // SaveCache atomically saves fast cache data to the given dir using all // available CPU cores. func (db *Database) SaveCache(dir string) error { return db.saveCache(dir, runtime.GOMAXPROCS(0)) } // SaveCachePeriodically atomically saves fast cache data to the given dir with // the specified interval. All dump operation will only use a single CPU core. func (db *Database) SaveCachePeriodically(dir string, interval time.Duration, stopCh <-chan struct{}) { ticker := time.NewTicker(interval) defer ticker.Stop() for { select { case <-ticker.C: db.saveCache(dir, 1) //nolint:errcheck case <-stopCh: return } } }