/* Copyright 2022 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package compress import ( "bytes" "encoding/binary" "fmt" "os" "github.com/ledgerwatch/log/v3" "github.com/ledgerwatch/erigon-lib/common/dbg" "github.com/ledgerwatch/erigon-lib/mmap" ) type word []byte // plain text word associated with code from dictionary type codeword struct { code uint16 // code associated with that word len byte // Number of bits in the codes pattern *word // Pattern corresponding to entries ptr *patternTable // pointer to deeper level tables next *codeword // points to next word in condensed table } type patternTable struct { bitLen int // Number of bits to lookup in the table patterns []*codeword head *codeword } func newPatternTable(bitLen int) *patternTable { pt := &patternTable{ bitLen: int(bitLen), } if bitLen <= condensePatternTableBitThreshold { pt.patterns = make([]*codeword, 1< 0 { codeTo = codeFrom | (uint16(1) << pt.bitLen) } // cw := &codeword{code: codeFrom, pattern: &pattern, len: byte(bits), ptr: nil} for c := codeFrom; c < codeTo; c += codeStep { if p := pt.patterns[c]; p == nil { pt.patterns[c] = cw } else { p.pattern, p.len, p.ptr, p.code = cw.pattern, cw.len, nil, c } } return } if pt.head == nil { cw.next = nil pt.head = cw return } var prev *codeword for cur := pt.head; cur != nil; prev, cur = cur, cur.next { } cw.next = nil prev.next = cw } func (pt *patternTable) condensedTableSearch(code uint16) *codeword { if pt.bitLen <= condensePatternTableBitThreshold { return pt.patterns[code] } var prev *codeword for cur := pt.head; cur != nil; prev, cur = cur, cur.next { if cur.code == code { if prev != nil { prev.next = cur.next cur.next = pt.head pt.head = cur } return cur } d := code - cur.code if d&1 != 0 { continue } if checkDistance(int(cur.len), int(d)) { if prev != nil { prev.next = cur.next cur.next = pt.head pt.head = cur } return cur } } return nil } type posTable struct { bitLen int // Number of bits to lookup in the table pos []uint64 lens []byte ptrs []*posTable } // Decompressor provides access to the superstrings in a file produced by a compressor type Decompressor struct { compressedFile string f *os.File mmapHandle1 []byte // mmap handle for unix (this is used to close mmap) mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap) data []byte // slice of correct size for the decompressor to work with dict *patternTable posDict *posTable wordsStart uint64 // Offset of whether the superstrings actually start size int64 wordsCount, emptyWordsCount uint64 } // Tables with bitlen greater than threshold will be condensed. // Condensing reduces size of decompression table but leads to slower reads. // To disable condesning at all set to 9 (we dont use tables larger than 2^9) // To enable condensing for tables of size larger 64 = 6 // for all tables = 0 // There is no sense to condense tables of size [1 - 64] in terms of performance // // Should be set before calling NewDecompression. var condensePatternTableBitThreshold = 9 func SetDecompressionTableCondensity(fromBitSize int) { condensePatternTableBitThreshold = fromBitSize } func NewDecompressor(compressedFile string) (*Decompressor, error) { d := &Decompressor{ compressedFile: compressedFile, } var err error defer func() { if rec := recover(); rec != nil { err = fmt.Errorf("decompressing file: %s, %+v, trace: %s", compressedFile, rec, dbg.Stack()) } }() d.f, err = os.Open(compressedFile) if err != nil { return nil, err } var stat os.FileInfo if stat, err = d.f.Stat(); err != nil { return nil, err } d.size = stat.Size() if d.size < 32 { return nil, fmt.Errorf("compressed file is too short: %d", d.size) } if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, int(d.size)); err != nil { return nil, err } // read patterns from file d.data = d.mmapHandle1[:d.size] d.wordsCount = binary.BigEndian.Uint64(d.data[:8]) d.emptyWordsCount = binary.BigEndian.Uint64(d.data[8:16]) dictSize := binary.BigEndian.Uint64(d.data[16:24]) data := d.data[24 : 24+dictSize] log.Debug("decompress dictionary", "size", dictSize) var depths []uint64 var patterns [][]byte var i uint64 var patternMaxDepth uint64 for i < dictSize { d, ns := binary.Uvarint(data[i:]) depths = append(depths, d) if d > patternMaxDepth { patternMaxDepth = d } i += uint64(ns) l, n := binary.Uvarint(data[i:]) i += uint64(n) patterns = append(patterns, data[i:i+l]) //fmt.Printf("depth = %d, pattern = [%x]\n", d, data[i:i+l]) i += l } if dictSize > 0 { var bitLen int if patternMaxDepth > 9 { bitLen = 9 } else { bitLen = int(patternMaxDepth) } // fmt.Printf("pattern maxDepth=%d\n", tree.maxDepth) d.dict = newPatternTable(bitLen) buildCondensedPatternTable(d.dict, depths, patterns, 0, 0, 0, patternMaxDepth) } // read positions pos := 24 + dictSize dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8]) data = d.data[pos+8 : pos+8+dictSize] log.Debug("decompress positions dictionary", "size", dictSize) var posDepths []uint64 var poss []uint64 var posMaxDepth uint64 i = 0 for i < dictSize { d, ns := binary.Uvarint(data[i:]) posDepths = append(posDepths, d) if d > posMaxDepth { posMaxDepth = d } i += uint64(ns) pos, n := binary.Uvarint(data[i:]) i += uint64(n) poss = append(poss, pos) } if dictSize > 0 { var bitLen int if posMaxDepth > 9 { bitLen = 9 } else { bitLen = int(posMaxDepth) } //fmt.Printf("pos maxDepth=%d\n", tree.maxDepth) tableSize := 1 << bitLen d.posDict = &posTable{ bitLen: bitLen, pos: make([]uint64, tableSize), lens: make([]byte, tableSize), ptrs: make([]*posTable, tableSize), } buildPosTable(posDepths, poss, d.posDict, 0, 0, 0, posMaxDepth) } d.wordsStart = pos + 8 + dictSize return d, nil } func buildCondensedPatternTable(table *patternTable, depths []uint64, patterns [][]byte, code uint16, bits int, depth uint64, maxDepth uint64) int { if len(depths) == 0 { return 0 } if depth == depths[0] { pattern := word(patterns[0]) //fmt.Printf("depth=%d, maxDepth=%d, code=[%b], codeLen=%d, pattern=[%x]\n", depth, maxDepth, code, bits, pattern) cw := &codeword{code: code, pattern: &pattern, len: byte(bits), ptr: nil} // table.patterns = append(table.patterns, cw) table.insertWord(cw) return 1 } if bits == 9 { var bitLen int if maxDepth > 9 { bitLen = 9 } else { bitLen = int(maxDepth) } newTable := newPatternTable(bitLen) cw := &codeword{code: code, pattern: nil, len: byte(0), ptr: newTable} // table.patterns = append(table.patterns, &codeword{code: code, pattern: nil, len: byte(0), ptr: newTable}) table.insertWord(cw) return buildCondensedPatternTable(newTable, depths, patterns, 0, 0, depth, maxDepth) } b0 := buildCondensedPatternTable(table, depths, patterns, code, bits+1, depth+1, maxDepth-1) return b0 + buildCondensedPatternTable(table, depths[b0:], patterns[b0:], (uint16(1)< 9 { bitLen = 9 } else { bitLen = int(maxDepth) } tableSize := 1 << bitLen newTable := &posTable{ bitLen: bitLen, pos: make([]uint64, tableSize), lens: make([]byte, tableSize), ptrs: make([]*posTable, tableSize), } table.pos[code] = 0 table.lens[code] = byte(0) table.ptrs[code] = newTable return buildPosTable(depths, poss, newTable, 0, 0, depth, maxDepth) } b0 := buildPosTable(depths, poss, table, code, bits+1, depth+1, maxDepth-1) return b0 + buildPosTable(depths[b0:], poss[b0:], table, (uint16(1)< 0 { g.dataP++ g.dataBit = 0 } } table := g.posDict if table.bitLen == 0 { return table.pos[0] } var l byte var pos uint64 for l == 0 { code := uint16(g.data[g.dataP]) >> g.dataBit if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) { code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit) } code &= (uint16(1) << table.bitLen) - 1 l = table.lens[code] if l == 0 { table = table.ptrs[code] g.dataBit += 9 } else { g.dataBit += int(l) pos = table.pos[code] } g.dataP += uint64(g.dataBit / 8) g.dataBit = g.dataBit % 8 } return pos } func (g *Getter) nextPattern() []byte { table := g.patternDict if table.bitLen == 0 { return *table.patterns[0].pattern } var l byte var pattern []byte for l == 0 { code := uint16(g.data[g.dataP]) >> g.dataBit if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) { code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit) } code &= (uint16(1) << table.bitLen) - 1 cw := table.condensedTableSearch(code) l = cw.len if l == 0 { table = cw.ptr g.dataBit += 9 } else { g.dataBit += int(l) pattern = *cw.pattern } g.dataP += uint64(g.dataBit / 8) g.dataBit = g.dataBit % 8 } return pattern } var condensedWordDistances = buildCondensedWordDistances() func checkDistance(power int, d int) bool { for _, dist := range condensedWordDistances[power] { if dist == d { return true } } return false } func buildCondensedWordDistances() [][]int { dist2 := make([][]int, 10) for i := 1; i <= 9; i++ { dl := make([]int, 0) for j := 1 << i; j < 512; j += 1 << i { dl = append(dl, j) } dist2[i] = dl } return dist2 } func (g *Getter) Size() int { return len(g.data) } func (d *Decompressor) Count() int { return int(d.wordsCount) } func (d *Decompressor) EmptyWordsCount() int { return int(d.emptyWordsCount) } // MakeGetter creates an object that can be used to access superstrings in the decompressor's file // Getter is not thread-safe, but there can be multiple getters used simultaneously and concurrently // for the same decompressor func (d *Decompressor) MakeGetter() *Getter { return &Getter{ posDict: d.posDict, data: d.data[d.wordsStart:], patternDict: d.dict, fName: d.compressedFile, } } func (g *Getter) Reset(offset uint64) { g.dataP = offset g.dataBit = 0 } func (g *Getter) HasNext() bool { return g.dataP < uint64(len(g.data)) } // Next extracts a compressed word from current offset in the file // and appends it to the given buf, returning the result of appending // After extracting next word, it moves to the beginning of the next one func (g *Getter) Next(buf []byte) ([]byte, uint64) { savePos := g.dataP wordLen := g.nextPos(true) wordLen-- // because when create huffman tree we do ++ , because 0 is terminator if wordLen == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return buf, g.dataP } bufPos := len(buf) // Tracking position in buf where to insert part of the word lastUncovered := len(buf) if len(buf)+int(wordLen) > cap(buf) { newBuf := make([]byte, len(buf)+int(wordLen)) copy(newBuf, buf) buf = newBuf } else { // Expand buffer buf = buf[:len(buf)+int(wordLen)] } // Loop below fills in the patterns for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another pt := g.nextPattern() copy(buf[bufPos:], pt) } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP = savePos g.dataBit = 0 g.nextPos(true /* clean */) // Reset the state of huffman reader bufPos = lastUncovered // Restore to the beginning of buf // Loop below fills the data which is not in the patterns for pos := g.nextPos(false); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) copy(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) postLoopPos += dif } lastUncovered = bufPos + len(g.nextPattern()) } if int(wordLen) > lastUncovered { dif := wordLen - uint64(lastUncovered) copy(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif]) postLoopPos += dif } g.dataP = postLoopPos g.dataBit = 0 return buf, postLoopPos } func (g *Getter) NextUncompressed() ([]byte, uint64) { wordLen := g.nextPos(true) wordLen-- // because when create huffman tree we do ++ , because 0 is terminator if wordLen == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return g.data[g.dataP:g.dataP], g.dataP } g.nextPos(false) if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } pos := g.dataP g.dataP += wordLen return g.data[pos:g.dataP], g.dataP } // Skip moves offset to the next word and returns the new offset. func (g *Getter) Skip() uint64 { l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return g.dataP } wordLen := int(l) var add uint64 var bufPos int var lastUncovered int for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 if wordLen < bufPos { panic(fmt.Sprintf("likely .idx is invalid: %s", g.fName)) } if bufPos > lastUncovered { add += uint64(bufPos - lastUncovered) } lastUncovered = bufPos + len(g.nextPattern()) } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if int(l) > lastUncovered { add += l - uint64(lastUncovered) } // Uncovered characters g.dataP += add return g.dataP } func (g *Getter) SkipUncompressed() uint64 { wordLen := g.nextPos(true) wordLen-- // because when create huffman tree we do ++ , because 0 is terminator if wordLen == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return g.dataP } g.nextPos(false) if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } g.dataP += wordLen return g.dataP } // Match returns true and next offset if the word at current offset fully matches the buf // returns false and current offset otherwise. func (g *Getter) Match(buf []byte) (bool, uint64) { savePos := g.dataP wordLen := g.nextPos(true) wordLen-- // because when create huffman tree we do ++ , because 0 is terminator lenBuf := len(buf) if wordLen == 0 || int(wordLen) != lenBuf { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if lenBuf != 0 { g.dataP, g.dataBit = savePos, 0 } return lenBuf == int(wordLen), g.dataP } var bufPos int // In the first pass, we only check patterns for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 pattern := g.nextPattern() if lenBuf < bufPos+len(pattern) || !bytes.Equal(buf[bufPos:bufPos+len(pattern)], pattern) { g.dataP, g.dataBit = savePos, 0 return false, savePos } } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP, g.dataBit = savePos, 0 g.nextPos(true /* clean */) // Reset the state of huffman decoder // Second pass - we check spaces not covered by the patterns var lastUncovered int bufPos = 0 for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) if lenBuf < bufPos || !bytes.Equal(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) { g.dataP, g.dataBit = savePos, 0 return false, savePos } postLoopPos += dif } lastUncovered = bufPos + len(g.nextPattern()) } if int(wordLen) > lastUncovered { dif := wordLen - uint64(lastUncovered) if lenBuf < int(wordLen) || !bytes.Equal(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif]) { g.dataP, g.dataBit = savePos, 0 return false, savePos } postLoopPos += dif } if lenBuf != int(wordLen) { g.dataP, g.dataBit = savePos, 0 return false, savePos } g.dataP, g.dataBit = postLoopPos, 0 return true, postLoopPos } // MatchPrefix only checks if the word at the current offset has a buf prefix. Does not move offset to the next word. func (g *Getter) MatchPrefix(prefix []byte) bool { savePos := g.dataP defer func() { g.dataP, g.dataBit = savePos, 0 }() wordLen := g.nextPos(true /* clean */) wordLen-- // because when create huffman tree we do ++ , because 0 is terminator prefixLen := len(prefix) if wordLen == 0 || int(wordLen) < prefixLen { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if prefixLen != 0 { g.dataP, g.dataBit = savePos, 0 } return prefixLen == int(wordLen) } var bufPos int // In the first pass, we only check patterns // Only run this loop as far as the prefix goes, there is no need to check further for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 pattern := g.nextPattern() var comparisonLen int if prefixLen < bufPos+len(pattern) { comparisonLen = prefixLen - bufPos } else { comparisonLen = len(pattern) } if bufPos < prefixLen { if !bytes.Equal(prefix[bufPos:bufPos+comparisonLen], pattern[:comparisonLen]) { return false } } } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP, g.dataBit = savePos, 0 g.nextPos(true /* clean */) // Reset the state of huffman decoder // Second pass - we check spaces not covered by the patterns var lastUncovered int bufPos = 0 for pos := g.nextPos(false /* clean */); pos != 0 && lastUncovered < prefixLen; pos = g.nextPos(false) { bufPos += int(pos) - 1 if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) var comparisonLen int if prefixLen < lastUncovered+int(dif) { comparisonLen = prefixLen - lastUncovered } else { comparisonLen = int(dif) } if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) { return false } postLoopPos += dif } lastUncovered = bufPos + len(g.nextPattern()) } if prefixLen > lastUncovered && int(wordLen) > lastUncovered { dif := wordLen - uint64(lastUncovered) var comparisonLen int if prefixLen < int(wordLen) { comparisonLen = prefixLen - lastUncovered } else { comparisonLen = int(dif) } if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) { return false } } return true }