// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "io" "github.com/ledgerwatch/turbo-geth/rlp" ) // Trie keys are dealt with in three distinct encodings: // // KEYBYTES encoding contains the actual key and nothing else. This encoding is the // input to most API functions. It is a packed encoding of hex sequences // with 2 nibbles per byte. // // HEX encoding contains one byte for each nibble of the key and an optional trailing // 'terminator' byte of value 0x10 which indicates whether or not the node at the key // contains a value. Hex key encoding is used for nodes loaded in memory because it's // convenient to access. // // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix // encoding" there) and contains the bytes of the key and a flag. The high nibble of the // first byte contains the flag; the lowest bit encoding the oddness of the length and // the second-lowest encoding whether the node at the key is a value node. The low nibble // of the first byte is zero in the case of an even number of nibbles and the first nibble // in the case of an odd number. All remaining nibbles (now an even number) fit properly // into the remaining bytes. Compact encoding is used for nodes stored on disk. func hexToCompact(hex []byte) []byte { terminator := byte(0) if hasTerm(hex) { terminator = 1 hex = hex[:len(hex)-1] } buf := make([]byte, len(hex)/2+1) buf[0] = terminator << 5 // the flag byte if len(hex)&1 == 1 { buf[0] |= 1 << 4 // odd flag buf[0] |= hex[0] // first nibble is contained in the first byte hex = hex[1:] } decodeNibbles(hex, buf[1:]) return buf } func compactToHex(compact []byte) []byte { if len(compact) == 0 { return compact } base := keybytesToHex(compact) // delete terminator flag if base[0] < 2 { base = base[:len(base)-1] } // apply odd flag chop := 2 - base[0]&1 return base[chop:] } // Keybytes represent a packed encoding of hex sequences // where 2 nibbles per byte are stored in Data // + an additional flag for terminating nodes. type Keybytes struct { Data []byte Odd bool Terminating bool } // Nibbles returns the number of nibbles. func (x *Keybytes) Nibbles() int { n := len(x.Data) * 2 if x.Odd { n-- } return n } // ToHex translates from KEYBYTES to HEX encoding. func (x *Keybytes) ToHex() []byte { return compactToHex(x.ToCompact()) } // ToCompact translates from KEYBYTES to COMPACT encoding. func (x *Keybytes) ToCompact() []byte { l := len(x.Data) if !x.Odd { l++ } var compact = make([]byte, l) if x.Terminating { compact[0] = 0x20 } if x.Odd { compact[0] += 0x10 compact[0] += x.Data[0] >> 4 for i := 1; i < len(x.Data); i++ { compact[i] = (x.Data[i-1] << 4) + (x.Data[i] >> 4) } } else { copy(compact[1:], x.Data) } return compact } // CompactToKeybytes translates from COMPACT to KEYBYTES encoding. func CompactToKeybytes(c []byte) Keybytes { var k Keybytes k.Odd = (c[0] & 0x10) != 0 k.Terminating = (c[0] & 0x20) != 0 if k.Odd { k.Data = make([]byte, len(c)) for i := 1; i < len(c); i++ { k.Data[i-1] = (c[i-1] << 4) + (c[i] >> 4) } k.Data[len(c)-1] = c[len(c)-1] << 4 } else { k.Data = c[1:] } return k } // EncodeRLP implements rlp.Encoder and encodes Keybytes in the COMPACT encoding. func (x *Keybytes) EncodeRLP(w io.Writer) error { return rlp.Encode(w, x.ToCompact()) } // DecodeRLP implements rlp.Decoder and decodes Keybytes from the COMPACT encoding. func (x *Keybytes) DecodeRLP(s *rlp.Stream) error { var compact []byte if err := s.Decode(&compact); err != nil { return err } *x = CompactToKeybytes(compact) return nil } func keybytesToHex(str []byte) []byte { l := len(str)*2 + 1 var nibbles = make([]byte, l) for i, b := range str { nibbles[i*2] = b / 16 nibbles[i*2+1] = b % 16 } nibbles[l-1] = 16 return nibbles } // hexToKeybytes turns hex nibbles into key bytes. // This can only be used for keys of even length. func hexToKeybytes(hex []byte) []byte { if hasTerm(hex) { hex = hex[:len(hex)-1] } if len(hex)&1 != 0 { panic("can't convert hex key of odd length") } key := make([]byte, len(hex)/2) decodeNibbles(hex, key) return key } func decodeNibbles(nibbles []byte, bytes []byte) { if hasTerm(nibbles) { nibbles = nibbles[:len(nibbles)-1] } nl := len(nibbles) for bi, ni := 0, 0; ni < nl; bi, ni = bi+1, ni+2 { if ni == nl-1 { bytes[bi] = (bytes[bi] &^ 0xf0) | nibbles[ni]<<4 } else { bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1] } } } // prefixLen returns the length of the common prefix of a and b. func prefixLen(a, b []byte) int { var i, length = 0, len(a) if len(b) < length { length = len(b) } for ; i < length; i++ { if a[i] != b[i] { break } } return i } // hasTerm returns whether a hex key has the terminator flag. func hasTerm(s []byte) bool { return len(s) > 0 && s[len(s)-1] == 16 }