// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "context" "errors" "fmt" "io" "math/big" "sort" "sync" "sync/atomic" "time" lru "github.com/hashicorp/golang-lru" "github.com/ledgerwatch/turbo-geth/common" "github.com/ledgerwatch/turbo-geth/common/debug" "github.com/ledgerwatch/turbo-geth/common/mclock" "github.com/ledgerwatch/turbo-geth/common/prque" "github.com/ledgerwatch/turbo-geth/consensus" "github.com/ledgerwatch/turbo-geth/consensus/misc" "github.com/ledgerwatch/turbo-geth/core/rawdb" "github.com/ledgerwatch/turbo-geth/core/state" "github.com/ledgerwatch/turbo-geth/core/types" "github.com/ledgerwatch/turbo-geth/core/vm" "github.com/ledgerwatch/turbo-geth/ethdb" "github.com/ledgerwatch/turbo-geth/event" "github.com/ledgerwatch/turbo-geth/log" "github.com/ledgerwatch/turbo-geth/metrics" "github.com/ledgerwatch/turbo-geth/params" "github.com/ledgerwatch/turbo-geth/rlp" ) var ( headBlockGauge = metrics.NewRegisteredGauge("chain/head/block", nil) headHeaderGauge = metrics.NewRegisteredGauge("chain/head/header", nil) headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil) accountReadTimer = metrics.NewRegisteredTimer("chain/account/reads", nil) accountHashTimer = metrics.NewRegisteredTimer("chain/account/hashes", nil) accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil) accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil) storageReadTimer = metrics.NewRegisteredTimer("chain/storage/reads", nil) storageHashTimer = metrics.NewRegisteredTimer("chain/storage/hashes", nil) storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil) storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil) blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil) blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil) blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil) blockWriteTimer = metrics.NewRegisteredTimer("chain/write", nil) blockReorgAddMeter = metrics.NewRegisteredMeter("chain/reorg/drop", nil) blockReorgDropMeter = metrics.NewRegisteredMeter("chain/reorg/add", nil) blockPrefetchExecuteTimer = metrics.NewRegisteredTimer("chain/prefetch/executes", nil) blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil) errInsertionInterrupted = errors.New("insertion is interrupted") // ErrNotFound is returned when sought data isn't found. ErrNotFound = errors.New("data not found") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 receiptsCacheLimit = 32 txLookupCacheLimit = 1024 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 badBlockLimit = 10 triesInMemory = 128 // BlockChainVersion ensures that an incompatible database forces a resync from scratch. // // Changelog: // // - Version 4 // The following incompatible database changes were added: // * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted // * the `Bloom` field of receipt is deleted // * the `BlockIndex` and `TxIndex` fields of txlookup are deleted // - Version 5 // The following incompatible database changes were added: // * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt // * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the // receipts' corresponding block // - Version 6 // The following incompatible database changes were added: // * Transaction lookup information stores the corresponding block number instead of block hash // - Version 7 // The following incompatible database changes were added: // * Use freezer as the ancient database to maintain all ancient data BlockChainVersion uint64 = 7 ) // CacheConfig contains the configuration values for the trie caching/pruning // that's resident in a blockchain. type CacheConfig struct { Pruning bool TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory TrieCleanNoPrefetch bool // Whether to disable heuristic state prefetching for followup blocks TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk BlocksBeforePruning uint64 BlocksToPrune uint64 PruneTimeout time.Duration ArchiveSyncInterval uint64 DownloadOnly bool NoHistory bool } // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { chainConfig *params.ChainConfig // Chain & network configuration cacheConfig *CacheConfig // Cache configuration for pruning db ethdb.DbWithPendingMutations // Low level persistent database to store final content in triegc *prque.Prque // Priority queue mapping block numbers to tries to gc gcproc time.Duration // Accumulates canonical block processing for trie dumping txLookupLimit uint64 hc *HeaderChain rmLogsFeed event.Feed chainFeed event.Feed chainSideFeed event.Feed chainHeadFeed event.Feed logsFeed event.Feed blockProcFeed event.Feed scope event.SubscriptionScope genesisBlock *types.Block chainmu sync.RWMutex // blockchain insertion lock currentBlock atomic.Value // Current head of the block chain committedBlock atomic.Value // Committed head of the block chain currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!) trieDbState *state.TrieDbState bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format receiptsCache *lru.Cache // Cache for the most recent receipts per block blockCache *lru.Cache // Cache for the most recent entire blocks txLookupCache *lru.Cache // Cache for the most recent transaction lookup data. futureBlocks *lru.Cache // future blocks are blocks added for later processing quit chan struct{} // blockchain quit channel wg sync.WaitGroup // chain processing wait group for shutting down running int32 // 0 if chain is running, 1 when stopped (must be called atomically) procInterrupt int32 // interrupt signaler for block processing quitMu sync.RWMutex engine consensus.Engine validator Validator // Block and state validator interface prefetcher Prefetcher // Block state prefetcher interface processor Processor // Block transaction processor interface vmConfig vm.Config badBlocks *lru.Cache // Bad block cache shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block. terminateInsert func(common.Hash, uint64) bool // Testing hook used to terminate ancient receipt chain insertion. highestKnownBlock uint64 highestKnownBlockMu sync.Mutex enableReceipts bool // Whether receipts need to be written to the database enableTxLookupIndex bool // Whether we store tx lookup index into the database enablePreimages bool // Whether we store preimages into the database resolveReads bool pruner Pruner DestsCache vm.Cache } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialises the default Ethereum Validator and // Processor. func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool, txLookupLimit *uint64, dests vm.Cache) (*BlockChain, error) { if cacheConfig == nil { cacheConfig = &CacheConfig{ Pruning: false, BlocksBeforePruning: 1024, TrieCleanLimit: 256, TrieDirtyLimit: 256, TrieTimeLimit: 5 * time.Minute, DownloadOnly: false, NoHistory: false, } } if cacheConfig.ArchiveSyncInterval == 0 { cacheConfig.ArchiveSyncInterval = 1024 } bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) receiptsCache, _ := lru.New(receiptsCacheLimit) blockCache, _ := lru.New(blockCacheLimit) txLookupCache, _ := lru.New(txLookupCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) badBlocks, _ := lru.New(badBlockLimit) cdb := db.NewBatch() bc := &BlockChain{ chainConfig: chainConfig, cacheConfig: cacheConfig, db: cdb, triegc: prque.New(nil), quit: make(chan struct{}), shouldPreserve: shouldPreserve, bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, receiptsCache: receiptsCache, blockCache: blockCache, txLookupCache: txLookupCache, futureBlocks: futureBlocks, engine: engine, vmConfig: vmConfig, badBlocks: badBlocks, enableTxLookupIndex: true, enableReceipts: false, enablePreimages: true, DestsCache: dests, } bc.validator = NewBlockValidator(chainConfig, bc, engine) bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine) bc.processor = NewStateProcessor(chainConfig, bc, engine) var err error bc.hc, err = NewHeaderChain(cdb, chainConfig, engine, bc.insertStopped) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } var nilBlock *types.Block bc.currentBlock.Store(nilBlock) bc.currentFastBlock.Store(nilBlock) if err := bc.loadLastState(); err != nil { return nil, err } // The first thing the node will do is reconstruct the verification data for // the head block (ethash cache or clique voting snapshot). Might as well do // it in advance. bc.engine.VerifyHeader(bc, bc.CurrentHeader(), true) if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 { var ( needRewind bool low uint64 ) // The head full block may be rolled back to a very low height due to // blockchain repair. If the head full block is even lower than the ancient // chain, truncate the ancient store. fullBlock := bc.CurrentBlock() if fullBlock != nil && fullBlock != bc.genesisBlock && fullBlock.NumberU64() < frozen-1 { needRewind = true low = fullBlock.NumberU64() } // In fast sync, it may happen that ancient data has been written to the // ancient store, but the LastFastBlock has not been updated, truncate the // extra data here. fastBlock := bc.CurrentFastBlock() if fastBlock != nil && fastBlock.NumberU64() < frozen-1 { needRewind = true if fastBlock.NumberU64() < low || low == 0 { low = fastBlock.NumberU64() } } if needRewind { var hashes []common.Hash previous := bc.CurrentHeader().Number.Uint64() for i := low + 1; i <= bc.CurrentHeader().Number.Uint64(); i++ { hashes = append(hashes, rawdb.ReadCanonicalHash(bc.db, i)) } bc.Rollback(hashes) log.Warn("Truncate ancient chain", "from", previous, "to", low) } } // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain for hash := range BadHashes { if header := bc.GetHeaderByHash(hash); header != nil { // get the canonical block corresponding to the offending header's number headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64()) // make sure the headerByNumber (if present) is in our current canonical chain if headerByNumber != nil && headerByNumber.Hash() == header.Hash() { log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash) bc.SetHead(header.Number.Uint64() - 1) log.Error("Chain rewind was successful, resuming normal operation") } } } // Take ownership of this particular state go bc.update() if cacheConfig.Pruning { var innerErr error bc.pruner, innerErr = NewBasicPruner(db, bc, bc.cacheConfig) if innerErr != nil { log.Error("Pruner init error", "err", innerErr) return nil, innerErr } innerErr = bc.pruner.Start() if innerErr != nil { log.Error("Pruner start error", "err", innerErr) return nil, innerErr } } return bc, nil } func (bc *BlockChain) SetResolveReads(rr bool) { bc.resolveReads = rr } func (bc *BlockChain) EnableReceipts(er bool) { bc.enableReceipts = er } func (bc *BlockChain) EnableTxLookupIndex(et bool) { bc.enableTxLookupIndex = et } func (bc *BlockChain) EnablePreimages(ep bool) { bc.enablePreimages = ep } func (bc *BlockChain) GetTrieDbState() (*state.TrieDbState, error) { if bc.trieDbState == nil && !bc.cacheConfig.DownloadOnly { currentBlockNr := bc.CurrentBlock().NumberU64() trieDbState, err := bc.GetTrieDbStateByBlock(bc.CurrentBlock().Header().Root, currentBlockNr) if err != nil { return nil, err } bc.setTrieDbState(trieDbState) log.Info("Creation complete.") } return bc.trieDbState, nil } func (bc *BlockChain) setTrieDbState(trieDbState *state.TrieDbState) { log.Warn("trieDbState has been changed", "isNil", trieDbState == nil, "callers", debug.Callers(20)) bc.trieDbState = trieDbState } func (bc *BlockChain) GetTrieDbStateByBlock(root common.Hash, blockNr uint64) (*state.TrieDbState, error) { if bc.trieDbState == nil || bc.trieDbState.LastRoot() != root || bc.trieDbState.GetBlockNr() != blockNr { log.Info("Creating IntraBlockState from latest state", "block", blockNr, "isNIl", bc.trieDbState == nil, "callers", debug.Callers(20)) tds := state.NewTrieDbState(root, bc.db, blockNr) tds.SetNoHistory(bc.NoHistory()) tds.SetResolveReads(bc.resolveReads) tds.EnablePreimages(bc.enablePreimages) log.Info("Creation complete.") return tds, nil } return bc.trieDbState, nil } // GetVMConfig returns the block chain VM config. func (bc *BlockChain) GetVMConfig() *vm.Config { return &bc.vmConfig } // empty returns an indicator whether the blockchain is empty. // Note, it's a special case that we connect a non-empty ancient // database with an empty node, so that we can plugin the ancient // into node seamlessly. func (bc *BlockChain) empty() bool { genesis := bc.genesisBlock.Hash() for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} { if hash != genesis { return false } } return true } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (bc *BlockChain) loadLastState() error { // Restore the last known head block head := rawdb.ReadHeadBlockHash(bc.db) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch log.Warn("Empty database, resetting chain") return bc.Reset() } // Make sure the entire head block is available currentBlock := bc.GetBlockByHash(head) if currentBlock == nil { // Corrupt or empty database, init from scratch log.Warn("Head block missing, resetting chain", "hash", head) return bc.Reset() } // Make sure the state associated with the block is available // Everything seems to be fine, set as the head block bc.currentBlock.Store(currentBlock) headBlockGauge.Update(int64(currentBlock.NumberU64())) // Restore the last known head header currentHeader := currentBlock.Header() if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) { if header := bc.GetHeaderByHash(head); header != nil { currentHeader = header } } bc.hc.SetCurrentHeader(bc.db, currentHeader) // Restore the last known head fast block bc.currentFastBlock.Store(currentBlock) headFastBlockGauge.Update(int64(currentBlock.NumberU64())) if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentFastBlock.Store(block) headFastBlockGauge.Update(int64(block.NumberU64())) } } // Issue a status log for the user currentFastBlock := bc.CurrentFastBlock() headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64()) blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()) log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0))) log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0))) log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0))) return nil } // SetHead rewinds the local chain to a new head. In the case of headers, everything // above the new head will be deleted and the new one set. In the case of blocks // though, the head may be further rewound if block bodies are missing (non-archive // nodes after a fast sync). func (bc *BlockChain) SetHead(head uint64) error { log.Warn("Rewinding blockchain", "target", head) bc.chainmu.Lock() defer bc.chainmu.Unlock() updateFn := func(db rawdb.DatabaseWriter, header *types.Header) { // Rewind the block chain, ensuring we don't end up with a stateless head block if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() < currentBlock.NumberU64() { newHeadBlock := bc.GetBlock(header.Hash(), header.Number.Uint64()) if newHeadBlock == nil { newHeadBlock = bc.genesisBlock } rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash()) // Degrade the chain markers if they are explicitly reverted. // In theory we should update all in-memory markers in the // last step, however the direction of SetHead is from high // to low, so it's safe the update in-memory markers directly. bc.currentBlock.Store(newHeadBlock) headBlockGauge.Update(int64(newHeadBlock.NumberU64())) } // Rewind the fast block in a simpleton way to the target head if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && header.Number.Uint64() < currentFastBlock.NumberU64() { newHeadFastBlock := bc.GetBlock(header.Hash(), header.Number.Uint64()) // If either blocks reached nil, reset to the genesis state if newHeadFastBlock == nil { newHeadFastBlock = bc.genesisBlock } rawdb.WriteHeadFastBlockHash(db, newHeadFastBlock.Hash()) // Degrade the chain markers if they are explicitly reverted. // In theory we should update all in-memory markers in the // last step, however the direction of SetHead is from high // to low, so it's safe the update in-memory markers directly. bc.currentFastBlock.Store(newHeadFastBlock) headFastBlockGauge.Update(int64(newHeadFastBlock.NumberU64())) } } // Rewind the header chain, deleting all block bodies until then delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) { // Ignore the error here since light client won't hit this path frozen, _ := bc.db.Ancients() if num+1 <= frozen { // Truncate all relative data(header, total difficulty, body, receipt // and canonical hash) from ancient store. if err := bc.db.TruncateAncients(num + 1); err != nil { log.Crit("Failed to truncate ancient data", "number", num, "err", err) } // Remove the hash <-> number mapping from the active store. rawdb.DeleteHeaderNumber(db, hash) } else { // Remove relative body and receipts from the active store. // The header, total difficulty and canonical hash will be // removed in the hc.SetHead function. rawdb.DeleteBody(db, hash, num) rawdb.DeleteReceipts(db, hash, num) } // Todo(rjl493456442) txlookup, bloombits, etc } bc.hc.SetHead(head, updateFn, delFn) // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.txLookupCache.Purge() bc.futureBlocks.Purge() return bc.loadLastState() } // FastSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := bc.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x…]", hash[:4]) } // If all checks out, manually set the head block bc.chainmu.Lock() bc.currentBlock.Store(block) headBlockGauge.Update(int64(block.NumberU64())) bc.chainmu.Unlock() log.Info("Committed new head block", "number", block.Number(), "hash", hash) return nil } // GasLimit returns the gas limit of the current HEAD block. func (bc *BlockChain) GasLimit() uint64 { return bc.CurrentBlock().GasLimit() } // CurrentBlock retrieves the current head block of the canonical chain. The // block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentBlock() *types.Block { return bc.currentBlock.Load().(*types.Block) } // CurrentFastBlock retrieves the current fast-sync head block of the canonical // chain. The block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentFastBlock() *types.Block { return bc.currentFastBlock.Load().(*types.Block) } // Validator returns the current validator. func (bc *BlockChain) Validator() Validator { return bc.validator } // Processor returns the current processor. func (bc *BlockChain) Processor() Processor { return bc.processor } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() error { return bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error { // Dump the entire block chain and purge the caches if err := bc.SetHead(0); err != nil { return err } bc.chainmu.Lock() defer bc.chainmu.Unlock() rawdb.WriteTd(bc.db, genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()) rawdb.WriteBlock(context.Background(), bc.db, genesis) bc.writeHeadBlock(genesis) // Last update all in-memory chain markers bc.genesisBlock = genesis bc.currentBlock.Store(bc.genesisBlock) headBlockGauge.Update(int64(bc.genesisBlock.NumberU64())) bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.db, bc.genesisBlock.Header()) bc.currentFastBlock.Store(bc.genesisBlock) headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64())) return nil } // Export writes the active chain to the given writer. func (bc *BlockChain) Export(w io.Writer) error { return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64()) } // ExportN writes a subset of the active chain to the given writer. func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { bc.chainmu.RLock() defer bc.chainmu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } log.Info("Exporting batch of blocks", "count", last-first+1) start, reported := time.Now(), time.Now() for nr := first; nr <= last; nr++ { block := bc.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } if time.Since(reported) >= statsReportLimit { log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start))) reported = time.Now() } } return nil } // writeHeadBlock injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) writeHeadBlock(block *types.Block) { // If the block is on a side chain or an unknown one, force other heads onto it too updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash() // Add the block to the canonical chain number scheme and mark as the head rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64()) if bc.enableTxLookupIndex && !bc.cacheConfig.DownloadOnly { rawdb.WriteTxLookupEntries(bc.db, block) } rawdb.WriteHeadBlockHash(bc.db, block.Hash()) if updateHeads { bc.hc.SetCurrentHeader(bc.db, block.Header()) rawdb.WriteHeadFastBlockHash(bc.db, block.Hash()) } // If the block is better than our head or is on a different chain, force update heads if updateHeads { bc.currentFastBlock.Store(block) headFastBlockGauge.Update(int64(block.NumberU64())) } bc.currentBlock.Store(block) headBlockGauge.Update(int64(block.NumberU64())) } // Genesis retrieves the chain's genesis block. func (bc *BlockChain) Genesis() *types.Block { return bc.genesisBlock } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (bc *BlockChain) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } number := bc.hc.GetBlockNumber(bc.db, hash) if number == nil { return nil } body := rawdb.ReadBody(bc.db, hash, *number) if body == nil { return nil } // Cache the found body for next time and return bc.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } number := bc.hc.GetBlockNumber(bc.db, hash) if number == nil { return nil } body := rawdb.ReadBodyRLP(bc.db, hash, *number) if len(body) == 0 { return nil } // Cache the found body for next time and return bc.bodyRLPCache.Add(hash, body) return body } // HasBlock checks if a block is fully present in the database or not. func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool { if bc.blockCache.Contains(hash) { return true } return rawdb.HasBody(bc.db, hash, number) } // HasFastBlock checks if a fast block is fully present in the database or not. func (bc *BlockChain) HasFastBlock(hash common.Hash, number uint64) bool { if !bc.HasBlock(hash, number) { return false } if bc.receiptsCache.Contains(hash) { return true } return rawdb.HasReceipts(bc.db, hash, number) } // HasBlockAndState checks if a block and associated state trie is fully present // in the database or not, caching it if present. func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool { // Check first that the block itself is known block := bc.GetBlock(hash, number) if block == nil { return false } return true } // CachedBlocks returns the hashes of the cached blocks. func (bc *BlockChain) CachedBlocks() []common.Hash { a := bc.blockCache.Keys() b := make([]common.Hash, len(a)) for i := range a { b[i] = a[i].(common.Hash) } return b } // AvailableBlocks returns the hashes of easily available blocks. func (bc *BlockChain) AvailableBlocks() []common.Hash { var res []common.Hash blockNbr := bc.CurrentBlock().NumberU64() for i := 0; i < blockCacheLimit; i++ { block := bc.GetBlockByNumber(blockNbr) if block == nil { break } res = append(res, block.Hash()) if blockNbr == 0 { break } blockNbr-- } return res } // GetBlock retrieves a block from the database by hash and number, // caching it if found. func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := bc.blockCache.Get(hash); ok { return block.(*types.Block) } block := rawdb.ReadBlock(bc.db, hash, number) if block == nil { return nil } // Cache the found block for next time and return bc.blockCache.Add(block.Hash(), block) return block } // GetBlockByHash retrieves a block from the database by hash, caching it if found. func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block { number := bc.hc.GetBlockNumber(bc.db, hash) if number == nil { return nil } return bc.GetBlock(hash, *number) } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block { hash := rawdb.ReadCanonicalHash(bc.db, number) if hash == (common.Hash{}) { return nil } return bc.GetBlock(hash, number) } // GetReceiptsByHash retrieves the receipts for all transactions in a given block. func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts { if receipts, ok := bc.receiptsCache.Get(hash); ok { return receipts.(types.Receipts) } number := rawdb.ReadHeaderNumber(bc.db, hash) if number == nil { return nil } receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig) if receipts == nil { return nil } bc.receiptsCache.Add(hash, receipts) return receipts } // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. // [deprecated by eth/62] func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { number := bc.hc.GetBlockNumber(bc.db, hash) if number == nil { return nil } for i := 0; i < n; i++ { block := bc.GetBlock(hash, *number) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() *number-- } return } // GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (bc *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header { uncles := []*types.Header{} for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = bc.GetBlock(block.ParentHash(), block.NumberU64()-1) } return uncles } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } // Unsubscribe all subscriptions registered from blockchain bc.scope.Close() close(bc.quit) bc.quitMu.Lock() bc.StopInsert() bc.wg.Wait() bc.quitMu.Unlock() if bc.pruner != nil { bc.pruner.Stop() } log.Info("Blockchain stopped") } // StopInsert interrupts all insertion methods, causing them to return // errInsertionInterrupted as soon as possible. Insertion is permanently disabled after // calling this method. func (bc *BlockChain) StopInsert() { atomic.StoreInt32(&bc.procInterrupt, 1) } // insertStopped returns true after StopInsert has been called. func (bc *BlockChain) insertStopped() bool { return atomic.LoadInt32(&bc.procInterrupt) == 1 } func (bc *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, bc.futureBlocks.Len()) for _, hash := range bc.futureBlocks.Keys() { if block, exist := bc.futureBlocks.Peek(hash); exist { blocks = append(blocks, block.(*types.Block)) } } if len(blocks) > 0 { sort.Slice(blocks, func(i, j int) bool { return blocks[i].NumberU64() < blocks[j].NumberU64() }) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { _, _ = bc.InsertChain(context.Background(), blocks[i:i+1]) } } } // WriteStatus status of write type WriteStatus byte const ( NonStatTy WriteStatus = iota CanonStatTy SideStatTy ) // Rollback is designed to remove a chain of links from the database that aren't // certain enough to be valid. func (bc *BlockChain) Rollback(chain []common.Hash) { bc.chainmu.Lock() defer bc.chainmu.Unlock() for i := len(chain) - 1; i >= 0; i-- { hash := chain[i] // Degrade the chain markers if they are explicitly reverted. // In theory we should update all in-memory markers in the // last step, however the direction of rollback is from high // to low, so it's safe the update in-memory markers directly. currentHeader := bc.hc.CurrentHeader() if currentHeader.Hash() == hash { bc.hc.SetCurrentHeader(bc.db, bc.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1)) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock.Hash() == hash { newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1) rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.ParentHash()) bc.currentFastBlock.Store(newFastBlock) headFastBlockGauge.Update(int64(newFastBlock.NumberU64())) } if currentBlock := bc.CurrentBlock(); currentBlock.Hash() == hash { newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1) rawdb.WriteHeadBlockHash(bc.db, currentBlock.ParentHash()) bc.currentBlock.Store(newBlock) headBlockGauge.Update(int64(newBlock.NumberU64())) } } if _, err := bc.db.Commit(); err != nil { log.Crit("Failed to rollback chain markers", "err", err) } // Truncate ancient data which exceeds the current header. // // Notably, it can happen that system crashes without truncating the ancient data // but the head indicator has been updated in the active store. Regarding this issue, // system will self recovery by truncating the extra data during the setup phase. //if err := bc.truncateAncient(bc.hc.CurrentHeader().Number.Uint64()); err != nil { // log.Crit("Truncate ancient store failed", "err", err) //} } // truncateAncient rewinds the blockchain to the specified header and deletes all // data in the ancient store that exceeds the specified header. func (bc *BlockChain) truncateAncient(head uint64) error { frozen, err := bc.db.Ancients() if err != nil { return err } // Short circuit if there is no data to truncate in ancient store. if frozen <= head+1 { return nil } // Truncate all the data in the freezer beyond the specified head if err := bc.db.TruncateAncients(head + 1); err != nil { return err } // Clear out any stale content from the caches bc.hc.headerCache.Purge() bc.hc.tdCache.Purge() bc.hc.numberCache.Purge() // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.txLookupCache.Purge() bc.futureBlocks.Purge() log.Info("Rewind ancient data", "number", head) return nil } // numberHash is just a container for a number and a hash, to represent a block type numberHash struct { number uint64 hash common.Hash } // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) { // We don't require the chainMu here since we want to maximize the // concurrency of header insertion and receipt insertion. if err := bc.addJob(); err != nil { return 0, err } defer bc.doneJob() var ( ancientBlocks, liveBlocks types.Blocks ancientReceipts, liveReceipts []types.Receipts ) // Do a sanity check that the provided chain is actually ordered and linked for i := 0; i < len(blockChain); i++ { if i != 0 { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(), "prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) } } if blockChain[i].NumberU64() <= ancientLimit { ancientBlocks, ancientReceipts = append(ancientBlocks, blockChain[i]), append(ancientReceipts, receiptChain[i]) } else { liveBlocks, liveReceipts = append(liveBlocks, blockChain[i]), append(liveReceipts, receiptChain[i]) } } var ( stats = struct{ processed, ignored int32 }{} start = time.Now() size = 0 ) // updateHead updates the head fast sync block if the inserted blocks are better // and returns an indicator whether the inserted blocks are canonical. updateHead := func(head *types.Block) bool { bc.chainmu.Lock() // Rewind may have occurred, skip in that case. if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 { currentFastBlock, td := bc.CurrentFastBlock(), bc.GetTd(head.Hash(), head.NumberU64()) if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 { rawdb.WriteHeadFastBlockHash(bc.db, head.Hash()) bc.currentFastBlock.Store(head) headFastBlockGauge.Update(int64(head.NumberU64())) bc.chainmu.Unlock() return true } } bc.chainmu.Unlock() return false } // writeAncient writes blockchain and corresponding receipt chain into ancient store. // // this function only accepts canonical chain data. All side chain will be reverted // eventually. /* writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { var ( previous = bc.CurrentFastBlock() ) // If any error occurs before updating the head or we are inserting a side chain, // all the data written this time wll be rolled back. defer func() { if previous != nil { if err := bc.truncateAncient(previous.NumberU64()); err != nil { log.Crit("Truncate ancient store failed", "err", err) } } }() var deleted []*numberHash for i, block := range blockChain { // Short circuit insertion if shutting down or processing failed if bc.getProcInterrupt() { return 0, errInsertionInterrupted } // Short circuit insertion if it is required(used in testing only) if bc.terminateInsert != nil && bc.terminateInsert(block.Hash(), block.NumberU64()) { return i, errors.New("insertion is terminated for testing purpose") } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) } // Turbo-Geth doesn't have fast sync support // Flush data into ancient database. size += rawdb.WriteAncientBlock(bc.db, block, receiptChain[i], bc.GetTd(block.Hash(), block.NumberU64())) if bc.enableTxLookupIndex { rawdb.WriteTxLookupEntries(bc.db, block) } // Write tx indices if any condition is satisfied: // * If user requires to reserve all tx indices(txlookuplimit=0) // * If all ancient tx indices are required to be reserved(txlookuplimit is even higher than ancientlimit) // * If block number is large enough to be regarded as a recent block // It means blocks below the ancientLimit-txlookupLimit won't be indexed. // // But if the `TxIndexTail` is not nil, e.g. Geth is initialized with // an external ancient database, during the setup, blockchain will start // a background routine to re-indexed all indices in [ancients - txlookupLimit, ancients) // range. In this case, all tx indices of newly imported blocks should be // generated. if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit || block.NumberU64() >= ancientLimit-bc.txLookupLimit { rawdb.WriteTxLookupEntries(batch, block) } else if rawdb.ReadTxIndexTail(bc.db) != nil { rawdb.WriteTxLookupEntries(batch, block) } stats.processed++ } if !updateHead(blockChain[len(blockChain)-1]) { return 0, errors.New("side blocks can't be accepted as the ancient chain data") } previous = nil // disable rollback explicitly // Wipe out canonical block data. for _, nh := range deleted { rawdb.DeleteBlockWithoutNumber(bc.db, nh.hash, nh.number) rawdb.DeleteCanonicalHash(bc.db, nh.number) } for _, block := range blockChain { // Always keep genesis block in active database. if block.NumberU64() != 0 { rawdb.DeleteBlockWithoutNumber(bc.db, block.Hash(), block.NumberU64()) rawdb.DeleteCanonicalHash(bc.db, block.NumberU64()) } } // Wipe out side chain too. for _, nh := range deleted { for _, hash := range rawdb.ReadAllHashes(bc.db, nh.number) { rawdb.DeleteBlock(bc.db, hash, nh.number) } } for _, block := range blockChain { // Always keep genesis block in active database. if block.NumberU64() != 0 { for _, hash := range rawdb.ReadAllHashes(bc.db, block.NumberU64()) { rawdb.DeleteBlock(bc.db, hash, block.NumberU64()) } } } return 0, nil } */ // writeLive writes blockchain and corresponding receipt chain into active store. writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { batch := bc.db.NewBatch() for i, block := range blockChain { // Short circuit insertion if shutting down or processing failed if bc.insertStopped() { return 0, errInsertionInterrupted } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) } if bc.HasBlock(block.Hash(), block.NumberU64()) { stats.ignored++ continue } // Write all the data out into the database rawdb.WriteBody(context.Background(), batch, block.Hash(), block.NumberU64(), block.Body()) rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i]) if bc.enableTxLookupIndex { rawdb.WriteTxLookupEntries(batch, block) } stats.processed++ if batch.BatchSize() >= batch.IdealBatchSize() { if _, err := batch.Commit(); err != nil { return 0, err } size += batch.BatchSize() batch = bc.db.NewBatch() } stats.processed++ } if batch.BatchSize() > 0 { size += batch.BatchSize() if _, err := batch.Commit(); err != nil { return 0, err } } updateHead(blockChain[len(blockChain)-1]) return 0, nil } /* // Write downloaded chain data and corresponding receipt chain data if len(ancientBlocks) > 0 { if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil { if err == errInsertionInterrupted { return 0, nil } return n, err } // Write the tx index tail (block number from where we index) before write any live blocks if len(liveBlocks) > 0 && liveBlocks[0].NumberU64() == ancientLimit+1 { // The tx index tail can only be one of the following two options: // * 0: all ancient blocks have been indexed // * ancient-limit: the indices of blocks before ancient-limit are ignored if tail := rawdb.ReadTxIndexTail(bc.db); tail == nil { if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit { rawdb.WriteTxIndexTail(bc.db, 0) } else { rawdb.WriteTxIndexTail(bc.db, ancientLimit-bc.txLookupLimit) } } } */ if len(liveBlocks) > 0 { if n, err := writeLive(liveBlocks, liveReceipts); err != nil { if err == errInsertionInterrupted { return 0, nil } return n, err } } head := blockChain[len(blockChain)-1] context := []interface{}{ "count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)), "number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)), "size", common.StorageSize(size), } if stats.ignored > 0 { context = append(context, []interface{}{"ignored", stats.ignored}...) } log.Info("Imported new block receipts", context...) return 0, nil } // SetTxLookupLimit is responsible for updating the txlookup limit to the // original one stored in db if the new mismatches with the old one. func (bc *BlockChain) SetTxLookupLimit(limit uint64) { bc.txLookupLimit = limit } // TxLookupLimit retrieves the txlookup limit used by blockchain to prune // stale transaction indices. func (bc *BlockChain) TxLookupLimit() uint64 { return bc.txLookupLimit } // WriteBlockWithState writes the block and all associated state to the database. func (bc *BlockChain) WriteBlockWithState(ctx context.Context, block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.IntraBlockState, tds *state.TrieDbState, emitHeadEvent bool, execute bool) (status WriteStatus, err error) { if err = bc.addJob(); err != nil { return NonStatTy, err } defer bc.doneJob() bc.chainmu.Lock() defer bc.chainmu.Unlock() return bc.writeBlockWithState(ctx, block, receipts, logs, state, tds, emitHeadEvent, execute) } // writeBlockWithState writes the block and all associated state to the database, // but is expects the chain mutex to be held. func (bc *BlockChain) writeBlockWithState(ctx context.Context, block *types.Block, receipts []*types.Receipt, logs []*types.Log, stateDb *state.IntraBlockState, tds *state.TrieDbState, emitHeadEvent bool, execute bool) (status WriteStatus, err error) { // Make sure no inconsistent state is leaked during insertion currentBlock := bc.CurrentBlock() // Calculate the total difficulty of the block ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1) if ptd == nil { return NonStatTy, consensus.ErrUnknownAncestor } externTd := new(big.Int).Add(block.Difficulty(), ptd) // Irrelevant of the canonical status, write the block itself to the database if common.IsCanceled(ctx) { return NonStatTy, ctx.Err() } if execute { rawdb.WriteTd(bc.db, block.Hash(), block.NumberU64(), externTd) } rawdb.WriteBody(ctx, bc.db, block.Hash(), block.NumberU64(), block.Body()) if execute { rawdb.WriteHeader(ctx, bc.db, block.Header()) } if tds != nil { tds.SetBlockNr(block.NumberU64()) } ctx = bc.WithContext(ctx, block.Number()) if stateDb != nil && execute { blockWriter := tds.DbStateWriter() if err := stateDb.CommitBlock(ctx, blockWriter); err != nil { return NonStatTy, err } // Always write changesets if err := blockWriter.WriteChangeSets(); err != nil { return NonStatTy, err } // Optionally write history if !bc.NoHistory() { if err := blockWriter.WriteHistory(); err != nil { return NonStatTy, err } } } if bc.enableReceipts && !bc.cacheConfig.DownloadOnly && execute { rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), receipts) } // If the total difficulty is higher than our known, add it to the canonical chain // Second clause in the if statement reduces the vulnerability to selfish mining. // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf //reorg := externTd.Cmp(localTd) > 0 //currentBlock = bc.CurrentBlock() //if !reorg && externTd.Cmp(localTd) == 0 { // // Split same-difficulty blocks by number, then preferentially select // // the block generated by the local miner as the canonical block. // if block.NumberU64() < currentBlock.NumberU64() { // reorg = true // } else if block.NumberU64() == currentBlock.NumberU64() { // var currentPreserve, blockPreserve bool // if bc.shouldPreserve != nil { // currentPreserve, blockPreserve = bc.shouldPreserve(currentBlock), bc.shouldPreserve(block) // } // reorg = !currentPreserve && (blockPreserve || mrand.Float64() < 0.5) // } //} //if reorg { // Reorganise the chain if the parent is not the head block if execute && block.ParentHash() != currentBlock.Hash() { if err := bc.reorg(currentBlock, block); err != nil { return NonStatTy, err } } // Write the positional metadata for transaction/receipt lookups and preimages if stateDb != nil && bc.enablePreimages && !bc.cacheConfig.DownloadOnly && execute { rawdb.WritePreimages(bc.db, stateDb.Preimages()) } status = CanonStatTy // Set new head. if execute { bc.writeHeadBlock(block) } bc.futureBlocks.Remove(block.Hash()) if execute { bc.chainFeed.Send(ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) if len(logs) > 0 { bc.logsFeed.Send(logs) } // In theory we should fire a ChainHeadEvent when we inject // a canonical block, but sometimes we can insert a batch of // canonicial blocks. Avoid firing too much ChainHeadEvents, // we will fire an accumulated ChainHeadEvent and disable fire // event here. if emitHeadEvent { bc.chainHeadFeed.Send(ChainHeadEvent{Block: block}) } } else { bc.chainSideFeed.Send(ChainSideEvent{Block: block}) } return status, nil } // addFutureBlock checks if the block is within the max allowed window to get // accepted for future processing, and returns an error if the block is too far // ahead and was not added. func (bc *BlockChain) addFutureBlock(block *types.Block) error { max := uint64(time.Now().Unix() + maxTimeFutureBlocks) if block.Time() > max { return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max) } bc.futureBlocks.Add(block.Hash(), block) return nil } // InsertBodyChain attempts to insert the given batch of block into the // canonical chain, without executing those blocks func (bc *BlockChain) InsertBodyChain(ctx context.Context, chain types.Blocks) (int, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil } // Remove already known canon-blocks var ( block, prev *types.Block ) // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { block = chain[i] prev = chain[i-1] if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() { // Chain broke ancestry, log a message (programming error) and skip insertion log.Error("Non contiguous block insert", "number", block.Number(), "hash", block.Hash(), "parent", block.ParentHash(), "prevnumber", prev.Number(), "prevhash", prev.Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, prev.NumberU64(), prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4]) } } // Only insert if the difficulty of the inserted chain is bigger than existing chain // Pre-checks passed, start the full block imports if err := bc.addJob(); err != nil { return 0, err } ctx = bc.WithContext(ctx, chain[0].Number()) bc.chainmu.Lock() defer func() { bc.chainmu.Unlock() bc.doneJob() }() n, err := bc.insertChain(ctx, chain, false, false /* execute */) return n, err } // InsertChain attempts to insert the given batch of blocks in to the canonical // chain or, otherwise, create a fork. If an error is returned it will return // the index number of the failing block as well an error describing what went // wrong. // // After insertion is done, all accumulated events will be fired. func (bc *BlockChain) InsertChain(ctx context.Context, chain types.Blocks) (int, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil } bc.blockProcFeed.Send(true) defer bc.blockProcFeed.Send(false) // Remove already known canon-blocks var ( block, prev *types.Block ) // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { block = chain[i] prev = chain[i-1] if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() { // Chain broke ancestry, log a message (programming error) and skip insertion log.Error("Non contiguous block insert", "number", block.Number(), "hash", block.Hash(), "parent", block.ParentHash(), "prevnumber", prev.Number(), "prevhash", prev.Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, prev.NumberU64(), prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4]) } } // Only insert if the difficulty of the inserted chain is bigger than existing chain // Pre-checks passed, start the full block imports if err := bc.addJob(); err != nil { return 0, err } ctx = bc.WithContext(ctx, chain[0].Number()) bc.chainmu.Lock() defer func() { bc.chainmu.Unlock() bc.doneJob() }() n, err := bc.insertChain(ctx, chain, true, true /* execute */) return n, err } // insertChain is the internal implementation of InsertChain, which assumes that // 1) chains are contiguous, and 2) The chain mutex is held. // // This method is split out so that import batches that require re-injecting // historical blocks can do so without releasing the lock, which could lead to // racey behaviour. If a sidechain import is in progress, and the historic state // is imported, but then new canon-head is added before the actual sidechain // completes, then the historic state could be pruned again func (bc *BlockChain) insertChain(ctx context.Context, chain types.Blocks, verifySeals bool, execute bool) (int, error) { log.Info("Inserting chain", "start", chain[0].NumberU64(), "end", chain[len(chain)-1].NumberU64(), "current", bc.CurrentBlock().Number().Uint64(), "currentHeader", bc.CurrentHeader().Number.Uint64()) // If the chain is terminating, don't even bother starting u if bc.getProcInterrupt() { return 0, nil } // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss) if execute { InitTxCacher() senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain) } // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats = insertStats{startTime: mclock.Now()} lastCanon *types.Block ) // Fire a single chain head event if we've progressed the chain if execute { defer func() { if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() { bc.chainHeadFeed.Send(ChainHeadEvent{lastCanon}) } }() } // Start the parallel header verifier headers := make([]*types.Header, len(chain)) seals := make([]bool, len(chain)) for i, block := range chain { headers[i] = block.Header() seals[i] = verifySeals } var abort chan<- struct{} var results <-chan error if execute { abort, results = bc.engine.VerifyHeaders(bc, headers, seals) defer close(abort) } externTd := big.NewInt(0) if len(chain) > 0 && chain[0].NumberU64() > 0 { d := bc.GetTd(chain[0].ParentHash(), chain[0].NumberU64()-1) if d != nil { externTd = externTd.Set(d) } } localTd := bc.GetTd(bc.CurrentBlock().Hash(), bc.CurrentBlock().NumberU64()) var verifyFrom int for verifyFrom = 0; verifyFrom < len(chain) && localTd.Cmp(externTd) >= 0; verifyFrom++ { header := chain[verifyFrom].Header() if execute { err := <-results if err != nil { bc.reportBlock(chain[verifyFrom], nil, err) return 0, err } } externTd = externTd.Add(externTd, header.Difficulty) } if execute && localTd.Cmp(externTd) >= 0 { log.Warn("Ignoring the chain segment because of insufficient difficulty", "external", externTd, "local", localTd, "insertingNumber", chain[0].NumberU64(), "currentNumber", bc.CurrentBlock().Number().Uint64(), ) // But we still write the blocks to the database because others might build on top of them td := bc.GetTd(chain[0].ParentHash(), chain[0].NumberU64()-1) for _, block := range chain { log.Warn("Saving", "block", block.NumberU64(), "hash", block.Hash()) td = new(big.Int).Add(block.Difficulty(), td) rawdb.WriteBlock(ctx, bc.db, block) rawdb.WriteTd(bc.db, block.Hash(), block.NumberU64(), td) } return 0, nil } var offset int var parent *types.Block var parentNumber = chain[0].NumberU64() - 1 // Find correct insertion point for this chain preBlocks := []*types.Block{} parentHash := chain[0].ParentHash() parent = bc.GetBlock(parentHash, parentNumber) if parent == nil { log.Error("chain segment could not be inserted, missing parent", "hash", parentHash) return 0, fmt.Errorf("chain segment could not be inserted, missing parent %x", parentHash) } canonicalHash := rawdb.ReadCanonicalHash(bc.db, parentNumber) for canonicalHash != parentHash { log.Warn("Chain segment's parent not on canonical hash, adding to pre-blocks", "block", parentNumber, "hash", parentHash) preBlocks = append(preBlocks, parent) parentNumber-- parentHash = parent.ParentHash() parent = bc.GetBlock(parentHash, parentNumber) if parent == nil { log.Error("chain segment could not be inserted, missing parent", "hash", parentHash) return 0, fmt.Errorf("chain segment could not be inserted, missing parent %x", parentHash) } canonicalHash = rawdb.ReadCanonicalHash(bc.db, parentNumber) } for left, right := 0, len(preBlocks)-1; left < right; left, right = left+1, right-1 { preBlocks[left], preBlocks[right] = preBlocks[right], preBlocks[left] } offset = len(preBlocks) if offset > 0 { chain = append(preBlocks, chain...) } var k int var committedK int // Iterate over the blocks and insert when the verifier permits for i, block := range chain { start := time.Now() if i >= offset { k = i - offset } else { k = 0 } // If the chain is terminating, stop processing blocks if bc.insertStopped() { log.Debug("Abort during block processing") break } // If the header is a banned one, straight out abort if BadHashes[block.Hash()] { bc.reportBlock(block, nil, ErrBlacklistedHash) return k, ErrBlacklistedHash } // Wait for the block's verification to complete var err error if i >= offset && k >= verifyFrom && execute { err = <-results } if err == nil { ctx, _ = params.GetNoHistoryByBlock(ctx, block.Number()) err = bc.Validator().ValidateBody(ctx, block) } switch { case err == ErrKnownBlock: // Block and state both already known. However if the current block is below // this number we did a rollback and we should reimport it nonetheless. if bc.CurrentBlock().NumberU64() >= block.NumberU64() { //fmt.Printf("Skipped known block %d\n", block.NumberU64()) stats.ignored++ // Special case. Commit the empty receipt slice if we meet the known // block in the middle. It can only happen in the clique chain. Whenever // we insert blocks via `insertSideChain`, we only commit `td`, `header` // and `body` if it's non-existent. Since we don't have receipts without // reexecution, so nothing to commit. But if the sidechain will be adpoted // as the canonical chain eventually, it needs to be reexecuted for missing // state, but if it's this special case here(skip reexecution) we will lose // the empty receipt entry. if len(block.Transactions()) == 0 { rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), nil) } else { log.Error("Please file an issue, skip known block execution without receipt", "hash", block.Hash(), "number", block.NumberU64()) } continue } case err == consensus.ErrFutureBlock: // Allow up to MaxFuture second in the future blocks. If this limit is exceeded // the chain is discarded and processed at a later time if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time() > max.Uint64() { return k, fmt.Errorf("future block: %v > %v", block.Time(), max) } bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()): bc.futureBlocks.Add(block.Hash(), block) stats.queued++ continue case err == consensus.ErrPrunedAncestor: // Block competing with the canonical chain, store in the db, but don't process // until the competitor TD goes above the canonical TD panic(err) case err != nil: bc.reportBlock(block, nil, err) return k, err } // Create a new statedb using the parent block and report an // error if it fails. if i > 0 { parent = chain[i-1] } readBlockNr := parentNumber var root common.Hash if bc.trieDbState == nil && !bc.cacheConfig.DownloadOnly && execute { if _, err = bc.GetTrieDbState(); err != nil { return k, err } } if !bc.cacheConfig.DownloadOnly && execute { root = bc.trieDbState.LastRoot() } var parentRoot common.Hash if parent != nil { parentRoot = parent.Root() } if parent != nil && root != parentRoot && !bc.cacheConfig.DownloadOnly && execute { log.Info("Rewinding from", "block", bc.CurrentBlock().NumberU64(), "to block", readBlockNr, "root", root.String(), "parentRoot", parentRoot.String()) if _, err = bc.db.Commit(); err != nil { log.Error("Could not commit chainDb before rewinding", "error", err) if bc.committedBlock.Load() != nil { bc.currentBlock.Store(bc.committedBlock.Load()) } bc.db.Rollback() bc.setTrieDbState(nil) return k, err } bc.committedBlock.Store(bc.currentBlock.Load()) if err = bc.trieDbState.UnwindTo(readBlockNr); err != nil { bc.db.Rollback() log.Error("Could not rewind", "error", err) bc.setTrieDbState(nil) return k, err } root := bc.trieDbState.LastRoot() if root != parentRoot { log.Error("Incorrect rewinding", "root", fmt.Sprintf("%x", root), "expected", fmt.Sprintf("%x", parentRoot)) bc.db.Rollback() bc.setTrieDbState(nil) return k, fmt.Errorf("incorrect rewinding: wrong root %x, expected %x", root, parentRoot) } currentBlock := bc.CurrentBlock() if err = bc.reorg(currentBlock, parent); err != nil { bc.db.Rollback() bc.setTrieDbState(nil) return k, err } if _, err = bc.db.Commit(); err != nil { log.Error("Could not commit chainDb after rewinding", "error", err) bc.db.Rollback() bc.setTrieDbState(nil) if bc.committedBlock.Load() != nil { bc.currentBlock.Store(bc.committedBlock.Load()) } return k, err } committedK = k bc.committedBlock.Store(bc.currentBlock.Load()) } var stateDB *state.IntraBlockState var receipts types.Receipts var usedGas uint64 var logs []*types.Log if !bc.cacheConfig.DownloadOnly && execute { stateDB = state.New(bc.trieDbState) // Process block using the parent state as reference point. receipts, logs, usedGas, root, err = bc.processor.PreProcess(block, stateDB, bc.trieDbState, bc.vmConfig, bc.DestsCache) reuseTrieDbState := true if err != nil { bc.rollbackBadBlock(block, receipts, err, reuseTrieDbState) return k, err } err = bc.Validator().ValidateGasAndRoot(block, root, usedGas, bc.trieDbState) if err != nil { bc.rollbackBadBlock(block, receipts, err, reuseTrieDbState) return k, err } reuseTrieDbState = false err = bc.processor.PostProcess(block, bc.trieDbState, receipts) if err != nil { bc.rollbackBadBlock(block, receipts, err, reuseTrieDbState) return k, err } err = bc.Validator().ValidateReceipts(block, receipts) if err != nil { bc.rollbackBadBlock(block, receipts, err, reuseTrieDbState) return k, err } } proctime := time.Since(start) // Write the block to the chain and get the status. status, err := bc.writeBlockWithState(ctx, block, receipts, logs, stateDB, bc.trieDbState, false, execute) if err != nil { bc.db.Rollback() bc.setTrieDbState(nil) if bc.committedBlock.Load() != nil { bc.currentBlock.Store(bc.committedBlock.Load()) } return k, err } switch status { case CanonStatTy: log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(), "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(), "elapsed", common.PrettyDuration(time.Since(start)), "root", block.Root()) lastCanon = block // Only count canonical blocks for GC processing time bc.gcproc += proctime case SideStatTy: log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) default: // This in theory is impossible, but lets be nice to our future selves and leave // a log, instead of trying to track down blocks imports that don't emit logs. log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) } stats.processed++ stats.usedGas += usedGas toCommit := stats.needToCommit(chain, bc.db, i) stats.report(chain, i, bc.db, toCommit) if toCommit { var written uint64 if written, err = bc.db.Commit(); err != nil { log.Error("Could not commit chainDb", "error", err) bc.db.Rollback() bc.setTrieDbState(nil) if bc.committedBlock.Load() != nil { bc.currentBlock.Store(bc.committedBlock.Load()) } return k, err } bc.committedBlock.Store(bc.currentBlock.Load()) committedK = k if bc.trieDbState != nil { bc.trieDbState.EvictTries(false) } size, err := bc.db.(ethdb.HasStats).DiskSize(context.Background()) if err != nil { return k, err } log.Info("Database", "size", size, "written", written) } } return committedK + 1, nil } // statsReportLimit is the time limit during import and export after which we // always print out progress. This avoids the user wondering what's going on. const statsReportLimit = 8 * time.Second const commitLimit = 60 * time.Second func (st *insertStats) needToCommit(chain []*types.Block, db ethdb.DbWithPendingMutations, index int) bool { var ( now = mclock.Now() elapsed = time.Duration(now) - time.Duration(st.startTime) ) if index == len(chain)-1 || elapsed >= commitLimit || db.BatchSize() >= db.IdealBatchSize() { return true } return false } // report prints statistics if some number of blocks have been processed // or more than a few seconds have passed since the last message. func (st *insertStats) report(chain []*types.Block, index int, batch ethdb.DbWithPendingMutations, toCommit bool) { // Fetch the timings for the batch var ( now = mclock.Now() elapsed = time.Duration(now) - time.Duration(st.startTime) ) // If we're at the last block of the batch or report period reached, log if index == len(chain)-1 || elapsed >= statsReportLimit || toCommit { // Count the number of transactions in this segment var txs int for _, block := range chain[st.lastIndex : index+1] { txs += len(block.Transactions()) } end := chain[index] context := []interface{}{ "blocks", st.processed, "txs", txs, "mgas", float64(st.usedGas) / 1000000, "elapsed", common.PrettyDuration(elapsed), "mgasps", float64(st.usedGas) * 1000 / float64(elapsed), "number", end.Number(), "hash", end.Hash(), "batch", common.StorageSize(batch.BatchSize()), } if timestamp := time.Unix(int64(end.Time()), 0); time.Since(timestamp) > time.Minute { context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...) } if st.queued > 0 { context = append(context, []interface{}{"queued", st.queued}...) } if st.ignored > 0 { context = append(context, []interface{}{"ignored", st.ignored}...) } log.Info("Imported new chain segment", context...) *st = insertStats{startTime: now, lastIndex: index + 1} } } // reorg takes two blocks, an old chain and a new chain and will reconstruct the // blocks and inserts them to be part of the new canonical chain and accumulates // potential missing transactions and post an event about them. func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs types.Transactions addedTxs types.Transactions deletedLogs [][]*types.Log rebirthLogs [][]*types.Log // collectLogs collects the logs that were generated or removed during // the processing of the block that corresponds with the given hash. // These logs are later announced as deleted or reborn collectLogs = func(hash common.Hash, removed bool) { // Coalesce logs and set 'Removed'. number := bc.hc.GetBlockNumber(bc.db, hash) if number == nil { return } receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig) var logs []*types.Log for _, receipt := range receipts { for _, log := range receipt.Logs { l := *log if removed { l.Removed = true } else { } logs = append(logs, &l) } } if len(logs) > 0 { if removed { deletedLogs = append(deletedLogs, logs) } else { rebirthLogs = append(rebirthLogs, logs) } } } // mergeLogs returns a merged log slice with specified sort order. mergeLogs = func(logs [][]*types.Log, reverse bool) []*types.Log { var ret []*types.Log if reverse { for i := len(logs) - 1; i >= 0; i-- { ret = append(ret, logs[i]...) } } else { for i := 0; i < len(logs); i++ { ret = append(ret, logs[i]...) } } return ret } ) // Reduce the longer chain to the same number as the shorter one // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // Old chain is longer, gather all transactions and logs as deleted ones for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash(), true) } } else { // New chain is longer, stash all blocks away for subsequent insertion for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("invalid old chain") } if newBlock == nil { return fmt.Errorf("invalid new chain") } // Both sides of the reorg are at the same number, reduce both until the common // ancestor is found for { // If the common ancestor was found, bail out if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } // Remove an old block as well as stash away a new block oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash(), true) newChain = append(newChain, newBlock) // Step back with both chains oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("invalid old chain") } newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if newBlock == nil { return fmt.Errorf("invalid new chain") } } // Ensure the user sees large reorgs if len(oldChain) > 0 && len(newChain) > 0 { logFn := log.Info msg := "Chain reorg detected" if len(oldChain) > 63 { msg = "Large chain reorg detected" logFn = log.Warn } logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(), "drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash()) blockReorgAddMeter.Mark(int64(len(newChain))) blockReorgDropMeter.Mark(int64(len(oldChain))) } else { log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "newnum", newBlock.Number(), "newhash", newBlock.Hash()) } // Delete the old chain for _, oldBlock := range oldChain { rawdb.DeleteCanonicalHash(bc.db, oldBlock.NumberU64()) } bc.writeHeadBlock(commonBlock) // Insert the new chain, taking care of the proper incremental order for i := len(newChain) - 1; i >= 0; i-- { // insert the block in the canonical way, re-writing history bc.writeHeadBlock(newChain[i]) // Collect reborn logs due to chain reorg collectLogs(newChain[i].Hash(), false) // Write lookup entries for hash based transaction/receipt searches if bc.enableTxLookupIndex { rawdb.WriteTxLookupEntries(bc.db, newChain[i]) } addedTxs = append(addedTxs, newChain[i].Transactions()...) } // When transactions get deleted from the database, the receipts that were // created in the fork must also be deleted for _, tx := range types.TxDifference(deletedTxs, addedTxs) { rawdb.DeleteTxLookupEntry(bc.db, tx.Hash()) } // Delete any canonical number assignments above the new head number := bc.CurrentBlock().NumberU64() for i := number + 1; ; i++ { hash := rawdb.ReadCanonicalHash(bc.db, i) if hash == (common.Hash{}) { break } rawdb.DeleteCanonicalHash(bc.db, i) } if _, err := bc.db.Commit(); err != nil { return err } // If any logs need to be fired, do it now. In theory we could avoid creating // this goroutine if there are no events to fire, but realistcally that only // ever happens if we're reorging empty blocks, which will only happen on idle // networks where performance is not an issue either way. if len(deletedLogs) > 0 { bc.rmLogsFeed.Send(RemovedLogsEvent{mergeLogs(deletedLogs, true)}) } if len(rebirthLogs) > 0 { bc.logsFeed.Send(mergeLogs(rebirthLogs, false)) } if len(oldChain) > 0 { for i := len(oldChain) - 1; i >= 0; i-- { bc.chainSideFeed.Send(ChainSideEvent{Block: oldChain[i]}) } } return nil } func (bc *BlockChain) update() { futureTimer := time.NewTicker(5 * time.Second) defer futureTimer.Stop() for { select { case <-futureTimer.C: bc.procFutureBlocks() case <-bc.quit: return } } } // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network func (bc *BlockChain) BadBlocks() []*types.Block { blocks := make([]*types.Block, 0, bc.badBlocks.Len()) for _, hash := range bc.badBlocks.Keys() { if blk, exist := bc.badBlocks.Peek(hash); exist { block := blk.(*types.Block) blocks = append(blocks, block) } } return blocks } // addBadBlock adds a bad block to the bad-block LRU cache func (bc *BlockChain) addBadBlock(block *types.Block) { bc.badBlocks.Add(block.Hash(), block) } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { bc.addBadBlock(block) var receiptString string for i, receipt := range receipts { receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n", i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(), receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState) } log.Error(fmt.Sprintf(` ########## BAD BLOCK ######### Chain config: %v Number: %v Hash: 0x%x %v Error: %v Callers: %v ############################## `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err, debug.Callers(20))) } func (bc *BlockChain) rollbackBadBlock(block *types.Block, receipts types.Receipts, err error, reuseTrieDbState bool) { bc.db.Rollback() if reuseTrieDbState { bc.setTrieDbState(bc.trieDbState.WithNewBuffer()) } else { bc.setTrieDbState(nil) } bc.reportBlock(block, receipts, err) if bc.committedBlock.Load() != nil { bc.currentBlock.Store(bc.committedBlock.Load()) } } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) { start := time.Now() if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil { return i, err } // Make sure only one thread manipulates the chain at once bc.chainmu.Lock() defer bc.chainmu.Unlock() if err := bc.addJob(); err != nil { return 0, err } defer bc.doneJob() whFunc := func(header *types.Header) error { _, err := bc.hc.WriteHeader(context.Background(), header) return err } n, err := bc.hc.InsertHeaderChain(chain, whFunc, start) var written uint64 var err1 error if written, err1 = bc.db.Commit(); err1 != nil { log.Error("Could not commit chainDb", "error", err1) return 0, err1 } size, err := bc.db.(ethdb.HasStats).DiskSize(context.Background()) if err != nil { return 0, err } log.Info("Database", "size", size, "written", written) return n, err } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (bc *BlockChain) CurrentHeader() *types.Header { return bc.hc.CurrentHeader() } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int { return bc.hc.GetTd(bc.db, hash, number) } // GetTdByHash retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int { return bc.hc.GetTdByHash(hash) } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header { return bc.hc.GetHeader(hash, number) } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header { return bc.hc.GetHeaderByHash(hash) } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool { return bc.hc.HasHeader(hash, number) } // GetCanonicalHash returns the canonical hash for a given block number func (bc *BlockChain) GetCanonicalHash(number uint64) common.Hash { return bc.hc.GetCanonicalHash(number) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { return bc.hc.GetBlockHashesFromHash(hash, max) } // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the // number of blocks to be individually checked before we reach the canonical chain. // // Note: ancestor == 0 returns the same block, 1 returns its parent and so on. func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) { return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header { return bc.hc.GetHeaderByNumber(number) } // Config retrieves the chain's fork configuration. func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig } // Engine retrieves the blockchain's consensus engine. func (bc *BlockChain) Engine() consensus.Engine { return bc.engine } // SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent. func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription { return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch)) } // SubscribeChainEvent registers a subscription of ChainEvent. func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription { return bc.scope.Track(bc.chainFeed.Subscribe(ch)) } // SubscribeChainHeadEvent registers a subscription of ChainHeadEvent. func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch)) } // SubscribeChainSideEvent registers a subscription of ChainSideEvent. func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription { return bc.scope.Track(bc.chainSideFeed.Subscribe(ch)) } // SubscribeLogsEvent registers a subscription of []*types.Log. func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription { return bc.scope.Track(bc.logsFeed.Subscribe(ch)) } // SubscribeBlockProcessingEvent registers a subscription of bool where true means // block processing has started while false means it has stopped. func (bc *BlockChain) SubscribeBlockProcessingEvent(ch chan<- bool) event.Subscription { return bc.scope.Track(bc.blockProcFeed.Subscribe(ch)) } func (bc *BlockChain) ChainDb() ethdb.Database { return bc.db } func (bc *BlockChain) NoHistory() bool { return bc.cacheConfig.NoHistory } func (bc *BlockChain) IsNoHistory(currentBlock *big.Int) bool { if currentBlock == nil { return bc.cacheConfig.NoHistory } if !bc.cacheConfig.NoHistory { return false } var isArchiveInterval bool currentBlockNumber := bc.CurrentBlock().Number().Uint64() highestKnownBlock := bc.GetHeightKnownBlock() if highestKnownBlock > currentBlockNumber { isArchiveInterval = (currentBlock.Uint64() - highestKnownBlock) <= bc.cacheConfig.ArchiveSyncInterval } else { isArchiveInterval = (currentBlock.Uint64() - currentBlockNumber) <= bc.cacheConfig.ArchiveSyncInterval } return bc.cacheConfig.NoHistory || isArchiveInterval } func (bc *BlockChain) NotifyHeightKnownBlock(h uint64) { bc.highestKnownBlockMu.Lock() if bc.highestKnownBlock < h { bc.highestKnownBlock = h } bc.highestKnownBlockMu.Unlock() } func (bc *BlockChain) GetHeightKnownBlock() uint64 { bc.highestKnownBlockMu.Lock() defer bc.highestKnownBlockMu.Unlock() return bc.highestKnownBlock } func (bc *BlockChain) WithContext(ctx context.Context, blockNum *big.Int) context.Context { ctx = bc.Config().WithEIPsFlags(ctx, blockNum) ctx = params.WithNoHistory(ctx, bc.NoHistory(), bc.IsNoHistory) return ctx } type Pruner interface { Start() error Stop() } // addJob should be called only for public methods func (bc *BlockChain) addJob() error { bc.quitMu.RLock() defer bc.quitMu.RUnlock() if bc.getProcInterrupt() { return errors.New("blockchain is stopped") } bc.wg.Add(1) return nil } func (bc *BlockChain) doneJob() { bc.wg.Done() } // ExecuteBlockEphemerally runs a block from provided stateReader and // writes the result to the provided stateWriter func ExecuteBlockEphemerally( chainConfig *params.ChainConfig, vmConfig *vm.Config, chainContext ChainContext, engine consensus.Engine, block *types.Block, stateReader state.StateReader, stateWriter state.WriterWithChangeSets, dests vm.Cache, ) (types.Receipts, error) { ibs := state.New(stateReader) header := block.Header() var receipts types.Receipts usedGas := new(uint64) gp := new(GasPool).AddGas(block.GasLimit()) if chainConfig.DAOForkSupport && chainConfig.DAOForkBlock != nil && chainConfig.DAOForkBlock.Cmp(block.Number()) == 0 { misc.ApplyDAOHardFork(ibs) } noop := state.NewNoopWriter() for i, tx := range block.Transactions() { ibs.Prepare(tx.Hash(), block.Hash(), i) receipt, err := ApplyTransaction(chainConfig, chainContext, nil, gp, ibs, noop, header, tx, usedGas, *vmConfig, dests) if err != nil { return nil, fmt.Errorf("tx %x failed: %v", tx.Hash(), err) } receipts = append(receipts, receipt) } if chainConfig.IsByzantium(header.Number) { receiptSha := types.DeriveSha(receipts) if receiptSha != block.Header().ReceiptHash { return nil, fmt.Errorf("mismatched receipt headers for block %d", block.NumberU64()) } } // Finalize the block, applying any consensus engine specific extras (e.g. block rewards) if _, err := engine.FinalizeAndAssemble(chainConfig, header, ibs, block.Transactions(), block.Uncles(), receipts); err != nil { return nil, fmt.Errorf("finalize of block %d failed: %v", block.NumberU64(), err) } ctx := chainConfig.WithEIPsFlags(context.Background(), header.Number) if err := ibs.CommitBlock(ctx, stateWriter); err != nil { return nil, fmt.Errorf("committing block %d failed: %v", block.NumberU64(), err) } if err := stateWriter.WriteChangeSets(); err != nil { return nil, fmt.Errorf("writing changesets for block %d failed: %v", block.NumberU64(), err) } return receipts, nil }