// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "fmt" "github.com/holiman/uint256" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon/turbo/rlphacks" ) // Experimental code for separating data and structural information // Each function corresponds to an opcode // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure type structInfoReceiver interface { leaf(length int, keyHex []byte, val rlphacks.RlpSerializable) error leafHash(length int, keyHex []byte, val rlphacks.RlpSerializable) error accountLeaf(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32, codeSize int) error accountLeafHash(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32) error extension(key []byte) error extensionHash(key []byte) error branch(set uint16) error branchHash(set uint16) error hash(hash []byte) error topHash() []byte topHashes(prefix []byte, branches, children uint16) []byte printTopHashes(prefix []byte, branches, children uint16) collectNextNode() error } // hashCollector gets called whenever there might be a need to create intermediate hash record type HashCollector func(keyHex []byte, hash []byte) error type StorageHashCollector func(accWithInc []byte, keyHex []byte, hash []byte) error type HashCollector2 func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error type StorageHashCollector2 func(accWithInc []byte, keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error func calcPrecLen(groups []uint16) int { if len(groups) == 0 { return 0 } return len(groups) - 1 } type GenStructStepData interface { GenStructStepData() } type GenStructStepAccountData struct { FieldSet uint32 Balance uint256.Int Nonce uint64 Incarnation uint64 } func (GenStructStepAccountData) GenStructStepData() {} type GenStructStepLeafData struct { Value rlphacks.RlpSerializable } func (GenStructStepLeafData) GenStructStepData() {} type GenStructStepHashData struct { Hash libcommon.Hash HasTree bool } func (GenStructStepHashData) GenStructStepData() {} // GenStructStep is one step of the algorithm that generates the structural information based on the sequence of keys. // `retain` parameter is the function that, called for a certain prefix, determines whether the trie node for that prefix needs to be // compressed into just hash (if `false` is returned), or constructed (if `true` is returned). Usually the `retain` function is // implemented in such a way to guarantee that certain keys are always accessible in the resulting trie (see RetainList.Retain function). // `buildExtensions` is set to true if the algorithm's step is invoked recursively, i.e. not after a freshly provided leaf or hash // `curr`, `succ` are two full keys or prefixes that are currently visible to the algorithm. By comparing these, the algorithm // makes decisions about the local structure, i.e. the presence of the prefix groups. // `e` parameter is the trie builder, which uses the structure information to assemble trie on the stack and compute its hash. // `h` parameter is the hash collector, which is notified whenever branch node is constructed. // `data` parameter specified if a hash or a binary string or an account should be emitted. // `groups` parameter is the map of the stack. each element of the `groups` slice is a bitmask, one bit per element currently on the stack. Meaning - which children of given prefix have dbutils.HashedAccount records // `hasTree` same as `groups`, but meaning - which children of given prefix have dbutils.TrieOfAccountsBucket record // `hasHash` same as `groups`, but meaning - which children of given prefix are branch nodes and their hashes can be saved and used on next trie resolution. // Whenever a `BRANCH` or `BRANCHHASH` opcode is emitted, the set of digits is taken from the corresponding `groups` item, which is // then removed from the slice. This signifies the usage of the number of the stack items by the `BRANCH` or `BRANCHHASH` opcode. // DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure // GenStructStepEx is extended to support optional generation of an Account Proof during trie_root.go CalcTrieRoot(). // The wrapper below calls it with nil/false defaults so that other callers do not need to be modified. func GenStructStepEx( retain func(prefix []byte) bool, curr, succ []byte, e structInfoReceiver, h HashCollector2, data GenStructStepData, groups []uint16, hasTree []uint16, hasHash []uint16, trace bool, wantProof func(prefix []byte) bool, cutoff bool, ) ([]uint16, []uint16, []uint16, error) { for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true { var precExists = len(groups) > 0 // Calculate the prefix of the smallest prefix group containing curr var precLen int if len(groups) > 0 { precLen = len(groups) - 1 } succLen := prefixLen(succ, curr) var maxLen int if precLen > succLen { maxLen = precLen } else { maxLen = succLen } if trace || maxLen >= len(curr) { fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions) } // Add the digit immediately following the max common prefix and compute length of remainder length extraDigit := curr[maxLen] for maxLen >= len(groups) { groups = append(groups, 0) } groups[maxLen] |= 1 << extraDigit remainderStart := maxLen if len(succ) > 0 || precExists { remainderStart++ } remainderLen := len(curr) - remainderStart for remainderStart+remainderLen >= len(hasTree) { hasTree = append(hasTree, 0) hasHash = append(hasHash, 0) } //fmt.Printf("groups is now %x,%d,%b\n", extraDigit, maxLen, groups) if !buildExtensions { switch v := data.(type) { case *GenStructStepHashData: if trace { fmt.Printf("HashData before: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups) } if v.HasTree { hasTree[len(curr)-1] |= 1 << curr[len(curr)-1] // keep track of existing records in DB } hasHash[len(curr)-1] |= 1 << curr[len(curr)-1] // register myself in parent bitmap if trace { fmt.Printf("HashData: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups) } /* building a hash */ if err := e.hash(v.Hash[:]); err != nil { return nil, nil, nil, err } buildExtensions = true case *GenStructStepAccountData: if retain(curr[:maxLen]) || (wantProof != nil && wantProof(curr[:len(curr)-1])) { e.collectNextNode() if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil { return nil, nil, nil, err } } else { if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil { return nil, nil, nil, err } } case *GenStructStepLeafData: /* building leafs */ if retain(curr[:maxLen]) { if err := e.leaf(remainderLen, curr, v.Value); err != nil { return nil, nil, nil, err } } else { if err := e.leafHash(remainderLen, curr, v.Value); err != nil { return nil, nil, nil, err } } default: panic(fmt.Errorf("unknown data type: %T", data)) } } if buildExtensions { if remainderLen > 0 { if trace { fmt.Printf("Extension before: %x->%x,%b, %b, %b\n", curr[:remainderStart], curr[remainderStart:remainderStart+remainderLen], hasHash, hasTree, groups) } // can't use hash of extension node // but must propagate hasBranch bits to keep tracking all existing DB records // groups bit also require propagation, but it's done automatically from := remainderStart if from == 0 { from = 1 } hasHash[from-1] &^= 1 << curr[from-1] for i := from; i < remainderStart+remainderLen; i++ { if 1< 0 { return groups, hasTree, hasHash, nil } var usefulHashes []byte if h != nil && (hasHash[maxLen] != 0 || hasTree[maxLen] != 0) { // top level must be in db if trace { fmt.Printf("why now: %x,%b,%b,%b\n", curr[:maxLen], hasHash, hasTree, groups) } usefulHashes = e.topHashes(curr[:maxLen], hasHash[maxLen], groups[maxLen]) if maxLen != 0 { hasTree[maxLen-1] |= 1 << curr[maxLen-1] // register myself in parent bitmap } if maxLen > 1 { if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, nil); err != nil { return nil, nil, nil, err } } } // Close the immediately encompassing prefix group, if needed if len(succ) > 0 || precExists { if maxLen > 0 { if trace { fmt.Printf("Branch before: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups) } hasHash[maxLen-1] |= 1 << curr[maxLen-1] if hasTree[maxLen] != 0 { hasTree[maxLen-1] |= 1 << curr[maxLen-1] } if trace { fmt.Printf("Branch: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups) } } var doProof bool if wantProof != nil { if maxLen > 0 && wantProof(curr[:maxLen]) { doProof = true } if len(succ) == 0 && maxLen == 0 && cutoff { doProof = true } } if trace { e.printTopHashes(curr[:maxLen], 0, groups[maxLen]) } if retain(curr[:maxLen]) || doProof { e.collectNextNode() if err := e.branch(groups[maxLen]); err != nil { return nil, nil, nil, err } } else { if err := e.branchHash(groups[maxLen]); err != nil { return nil, nil, nil, err } } } if h != nil { send := maxLen == 0 && (hasTree[maxLen] != 0 || hasHash[maxLen] != 0) // account.root - store only if have useful info send = send || (maxLen == 1 && groups[maxLen] != 0) // first level of trie_account - store in any case if send { if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, e.topHash()[1:]); err != nil { return nil, nil, nil, err } } } groups = groups[:maxLen] hasTree = hasTree[:maxLen] hasHash = hasHash[:maxLen] // Check the end of recursion if precLen == 0 { return groups, hasTree, hasHash, nil } // Identify preceding key for the buildExtensions invocation curr = curr[:precLen] for len(groups) > 0 && groups[len(groups)-1] == 0 { groups = groups[:len(groups)-1] } } return nil, nil, nil, nil } func GenStructStep( retain func(prefix []byte) bool, curr, succ []byte, e structInfoReceiver, h HashCollector2, data GenStructStepData, groups []uint16, hasTree []uint16, hasHash []uint16, trace bool, ) ([]uint16, []uint16, []uint16, error) { return GenStructStepEx(retain, curr, succ, e, h, data, groups, hasTree, hasHash, trace, nil, false) } func GenStructStepOld( retain func(prefix []byte) bool, curr, succ []byte, e structInfoReceiver, h HashCollector, data GenStructStepData, groups []uint16, trace bool, ) ([]uint16, error) { for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true { var precExists = len(groups) > 0 // Calculate the prefix of the smallest prefix group containing curr var precLen int if len(groups) > 0 { precLen = len(groups) - 1 } succLen := prefixLen(succ, curr) var maxLen int if precLen > succLen { maxLen = precLen } else { maxLen = succLen } if trace || maxLen >= len(curr) { fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions) } // Add the digit immediately following the max common prefix and compute length of remainder length extraDigit := curr[maxLen] for maxLen >= len(groups) { groups = append(groups, 0) } groups[maxLen] |= 1 << extraDigit //fmt.Printf("groups is now %b\n", groups) remainderStart := maxLen if len(succ) > 0 || precExists { remainderStart++ } remainderLen := len(curr) - remainderStart if !buildExtensions { switch v := data.(type) { case *GenStructStepHashData: /* building a hash */ if err := e.hash(v.Hash[:]); err != nil { return nil, err } buildExtensions = true case *GenStructStepAccountData: if retain(curr[:maxLen]) { if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil { return nil, err } } else { if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil { return nil, err } } case *GenStructStepLeafData: /* building leafs */ if retain(curr[:maxLen]) { if err := e.leaf(remainderLen, curr, v.Value); err != nil { return nil, err } } else { if err := e.leafHash(remainderLen, curr, v.Value); err != nil { return nil, err } } default: panic(fmt.Errorf("unknown data type: %T", data)) } } if buildExtensions { if remainderLen > 0 { if trace { fmt.Printf("Extension %x\n", curr[remainderStart:remainderStart+remainderLen]) } /* building extensions */ if retain(curr[:maxLen]) { if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } else { if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil { return nil, err } } } } // Check for the optional part if precLen <= succLen && len(succ) > 0 { return groups, nil } // Close the immediately encompassing prefix group, if needed if len(succ) > 0 || precExists { if retain(curr[:maxLen]) { if err := e.branch(groups[maxLen]); err != nil { return nil, err } } else { if err := e.branchHash(groups[maxLen]); err != nil { return nil, err } } if h != nil { if err := h(curr[:maxLen], e.topHash()[1:]); err != nil { return nil, err } } } groups = groups[:maxLen] // Check the end of recursion if precLen == 0 { return groups, nil } // Identify preceding key for the buildExtensions invocation curr = curr[:precLen] for len(groups) > 0 && groups[len(groups)-1] == 0 { groups = groups[:len(groups)-1] } } return nil, nil }