// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "fmt" "sort" libcommon "github.com/ledgerwatch/erigon-lib/common" ) type RetainDecider interface { Retain([]byte) bool IsCodeTouched(libcommon.Hash) bool } type RetainDeciderWithMarker interface { RetainDecider AddKeyWithMarker(key []byte, marker bool) RetainWithMarker(prefix []byte) (retain bool, nextMarkedKey []byte) } // RetainList encapsulates the list of keys that are required to be fully available, or loaded // (by using `BRANCH` opcode instead of `HASHER`) after processing of the sequence of key-value // pairs // DESCRIBED: docs/programmers_guide/guide.md#converting-sequence-of-keys-and-value-into-a-multiproof type RetainList struct { inited bool // Whether keys are sorted and "LTE" and "GT" indices set minLength int // Mininum length of prefixes for which `HashOnly` function can return `true` lteIndex int // Index of the "LTE" key in the keys slice. Next one is "GT" hexes [][]byte markers []bool codeTouches map[libcommon.Hash]struct{} } // NewRetainList creates new RetainList func NewRetainList(minLength int) *RetainList { return &RetainList{minLength: minLength, codeTouches: make(map[libcommon.Hash]struct{})} } func (rl *RetainList) Len() int { return len(rl.hexes) } func (rl *RetainList) Less(i, j int) bool { return bytes.Compare(rl.hexes[i], rl.hexes[j]) < 0 } func (rl *RetainList) Swap(i, j int) { rl.hexes[i], rl.hexes[j] = rl.hexes[j], rl.hexes[i] rl.markers[i], rl.markers[j] = rl.markers[j], rl.markers[i] } // AddKey adds a new key (in KEY encoding) to the list func (rl *RetainList) AddKey(key []byte) { rl.AddKeyWithMarker(key, false) } func (rl *RetainList) AddKeyWithMarker(key []byte, marker bool) { var nibbles = make([]byte, 2*len(key)) for i, b := range key { nibbles[i*2] = b / 16 nibbles[i*2+1] = b % 16 } rl.AddHex(nibbles) rl.markers = append(rl.markers, marker) } // AddHex adds a new key (in HEX encoding) to the list func (rl *RetainList) AddHex(hex []byte) { rl.hexes = append(rl.hexes, hex) } // AddCodeTouch adds a new code touch into the resolve set func (rl *RetainList) AddCodeTouch(codeHash libcommon.Hash) { rl.codeTouches[codeHash] = struct{}{} } func (rl *RetainList) IsCodeTouched(codeHash libcommon.Hash) bool { _, ok := rl.codeTouches[codeHash] return ok } func (rl *RetainList) ensureInited() { if rl.inited { return } if len(rl.markers) == 0 { rl.markers = make([]bool, len(rl.hexes)) } if !sort.IsSorted(rl) { sort.Sort(rl) } rl.lteIndex = 0 rl.inited = true } // Retain decides whether to emit `HASHER` or `BRANCH` for a given prefix, by // checking if this is prefix of any of the keys added to the set // Since keys in the set are sorted, and we expect that the prefixes will // come in monotonically ascending order, we optimise for this, though // the function would still work if the order is different func (rl *RetainList) Retain(prefix []byte) bool { rl.ensureInited() if len(prefix) < rl.minLength { return true } // Adjust "GT" if necessary var gtAdjusted bool for rl.lteIndex < len(rl.hexes)-1 && bytes.Compare(rl.hexes[rl.lteIndex+1], prefix) <= 0 { rl.lteIndex++ gtAdjusted = true } // Adjust "LTE" if necessary (normally will not be necessary) for !gtAdjusted && rl.lteIndex > 0 && bytes.Compare(rl.hexes[rl.lteIndex], prefix) > 0 { rl.lteIndex-- } if rl.lteIndex < len(rl.hexes) { if bytes.HasPrefix(rl.hexes[rl.lteIndex], prefix) { return true } } if rl.lteIndex < len(rl.hexes)-1 { if bytes.HasPrefix(rl.hexes[rl.lteIndex+1], prefix) { return true } } return false } func (rl *RetainList) RetainWithMarker(prefix []byte) (bool, []byte) { rl.ensureInited() if len(prefix) < rl.minLength { return true, nil } // Adjust "GT" if necessary var gtAdjusted bool for rl.lteIndex < len(rl.hexes)-1 && bytes.Compare(rl.hexes[rl.lteIndex+1], prefix) <= 0 { rl.lteIndex++ gtAdjusted = true } // Adjust "LTE" if necessary (normally will not be necessary) for !gtAdjusted && rl.lteIndex > 0 && bytes.Compare(rl.hexes[rl.lteIndex], prefix) > 0 { rl.lteIndex-- } if rl.lteIndex < len(rl.hexes) { if bytes.HasPrefix(rl.hexes[rl.lteIndex], prefix) { return true, rl.nextMarkedItem(rl.lteIndex) } } if rl.lteIndex < len(rl.hexes)-1 { if bytes.HasPrefix(rl.hexes[rl.lteIndex+1], prefix) { return true, rl.nextMarkedItem(rl.lteIndex + 1) } } if rl.lteIndex < len(rl.hexes) { if bytes.Compare(prefix, rl.hexes[rl.lteIndex]) <= 0 { return false, rl.nextMarkedItem(rl.lteIndex) } } if rl.lteIndex < len(rl.hexes)-1 { if bytes.Compare(prefix, rl.hexes[rl.lteIndex+1]) <= 0 { return false, rl.nextMarkedItem(rl.lteIndex + 1) } } return false, nil } func (rl *RetainList) nextMarkedItem(index int) []byte { for i := index; i < len(rl.markers); i++ { if rl.markers[i] { return rl.hexes[i] } } return nil } // Rewind lets us reuse this list from the beginning func (rl *RetainList) Rewind() { rl.lteIndex = 0 } func (rl *RetainList) String() string { return fmt.Sprintf("%x", rl.hexes) }