package forkchoice import ( "bytes" "fmt" "sort" libcommon "github.com/ledgerwatch/erigon-lib/common" "github.com/ledgerwatch/erigon/cl/cltypes" "github.com/ledgerwatch/erigon/cmd/erigon-cl/core/state" ) // GetHead fetches the current head. func (f *ForkChoiceStore) GetHead() (libcommon.Hash, uint64, error) { f.mu.Lock() defer f.mu.Unlock() // Retrieve att head := f.justifiedCheckpoint.Root blocks := f.getFilteredBlockTree(head) // See which validators can be used for attestation score justificationState, err := f.getCheckpointState(*f.justifiedCheckpoint) if err != nil { return libcommon.Hash{}, 0, err } // Filter all validators deemed as bad filteredIndicies := f.filterValidatorSetForAttestationScores(justificationState.Validators(), justificationState.Epoch()) for { // Filter out current head children. unfilteredChildren := f.forkGraph.GetChildren(head) children := []libcommon.Hash{} for _, child := range unfilteredChildren { if _, ok := blocks[child]; ok { children = append(children, child) } } // Stop if we dont have any more children if len(children) == 0 { header, hasHeader := f.forkGraph.GetHeader(head) if !hasHeader { return libcommon.Hash{}, 0, fmt.Errorf("no slot for head is stored") } return head, header.Slot, nil } // Average case scenario. if len(children) == 1 { head = children[0] continue } // Sort children by lexigographical order sort.Slice(children, func(i, j int) bool { childA := children[i] childB := children[j] return bytes.Compare(childA[:], childB[:]) < 0 }) // After sorting is done determine best fit. head = children[0] maxWeight := f.getWeight(children[0], filteredIndicies, justificationState) for i := 1; i < len(children); i++ { weight := f.getWeight(children[i], filteredIndicies, justificationState) // Lexicographical order is king. if weight >= maxWeight { head = children[i] maxWeight = weight } } } } // filterValidatorSetForAttestationScores preliminarly filter the validator set obliging to consensus rules. func (f *ForkChoiceStore) filterValidatorSetForAttestationScores(validatorSet []*cltypes.Validator, epoch uint64) []uint64 { filtered := make([]uint64, 0, len(validatorSet)) for validatorIndex, validator := range validatorSet { if !validator.Active(epoch) || validator.Slashed { continue } if _, hasLatestMessage := f.latestMessages[uint64(validatorIndex)]; !hasLatestMessage { continue } if _, isUnequivocating := f.equivocatingIndicies[uint64(validatorIndex)]; isUnequivocating { continue } filtered = append(filtered, uint64(validatorIndex)) } return filtered } // getWeight computes weight in head decision of canonical chain. func (f *ForkChoiceStore) getWeight(root libcommon.Hash, indicies []uint64, state *state.BeaconState) uint64 { header, has := f.forkGraph.GetHeader(root) if !has { return 0 } validators := state.Validators() // Compute attestation score var attestationScore uint64 for _, validatorIndex := range indicies { if f.Ancestor(f.latestMessages[validatorIndex].Root, header.Slot) != root { continue } attestationScore += validators[validatorIndex].EffectiveBalance } if f.proposerBoostRoot == (libcommon.Hash{}) { return attestationScore } // Boost is applied if root is an ancestor of proposer_boost_root if f.Ancestor(f.proposerBoostRoot, header.Slot) == root { committeeWeight := state.GetTotalActiveBalance() / state.BeaconConfig().SlotsPerEpoch attestationScore += (committeeWeight * state.BeaconConfig().ProposerScoreBoost) / 100 } return attestationScore } // getFilteredBlockTree filters out dumb blocks. func (f *ForkChoiceStore) getFilteredBlockTree(base libcommon.Hash) map[libcommon.Hash]*cltypes.BeaconBlockHeader { blocks := make(map[libcommon.Hash]*cltypes.BeaconBlockHeader) f.getFilterBlockTree(base, blocks) return blocks } // getFilterBlockTree recursively traverses the block tree to identify viable blocks. // It takes a block hash and a map of viable blocks as input parameters, and returns a boolean value indicating // whether the current block is viable. func (f *ForkChoiceStore) getFilterBlockTree(blockRoot libcommon.Hash, blocks map[libcommon.Hash]*cltypes.BeaconBlockHeader) bool { header, has := f.forkGraph.GetHeader(blockRoot) if !has { return false } children := f.forkGraph.GetChildren(blockRoot) // If there are children iterate down recursively and see which branches are viable. if len(children) > 0 { isAnyViable := false for _, child := range children { if f.getFilterBlockTree(child, blocks) { isAnyViable = true } } if isAnyViable { blocks[blockRoot] = header } return isAnyViable } currentJustifiedCheckpoint, has := f.forkGraph.GetCurrentJustifiedCheckpoint(blockRoot) if !has { return false } finalizedJustifiedCheckpoint, has := f.forkGraph.GetFinalizedCheckpoint(blockRoot) if !has { return false } genesisEpoch := f.forkGraph.Config().GenesisEpoch if (f.justifiedCheckpoint.Epoch == genesisEpoch || currentJustifiedCheckpoint.Equal(f.justifiedCheckpoint)) && (f.finalizedCheckpoint.Epoch == genesisEpoch || finalizedJustifiedCheckpoint.Equal(f.finalizedCheckpoint)) { blocks[blockRoot] = header return true } return false }