/* Copyright 2021 Erigon contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package compress import ( "bytes" "encoding/binary" "fmt" "os" "github.com/ledgerwatch/erigon-lib/mmap" ) type patternTable struct { bitLen int // Number of bits to lookup in the table patterns [][]byte // Patterns corresponding to entries lens []byte // Number of bits in the codes ptrs []*patternTable // pointers to deeper level tables } type posTable struct { bitLen int // Number of bits to lookup in the table pos []uint64 lens []byte ptrs []*posTable } type huffmanNodePos struct { zero *huffmanNodePos one *huffmanNodePos pos uint64 maxDepth int } type huffmanNodePattern struct { zero *huffmanNodePattern one *huffmanNodePattern pattern []byte maxDepth int } // Decompressor provides access to the superstrings in a file produced by a compressor type Decompressor struct { compressedFile string f *os.File mmapHandle1 []byte // mmap handle for unix (this is used to close mmap) mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap) data []byte // slice of correct size for the decompressor to work with dict *patternTable posDict *posTable wordsStart uint64 // Offset of whether the superstrings actually start size int64 wordsCount, emptyWordsCount uint64 } func NewDecompressor(compressedFile string) (*Decompressor, error) { d := &Decompressor{ compressedFile: compressedFile, } var err error d.f, err = os.Open(compressedFile) if err != nil { return nil, err } var stat os.FileInfo if stat, err = d.f.Stat(); err != nil { return nil, err } d.size = stat.Size() if d.size < 40 { return nil, fmt.Errorf("compressed file is too short: %d", d.size) } if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, int(d.size)); err != nil { return nil, err } d.data = d.mmapHandle1[:d.size] d.wordsCount = binary.BigEndian.Uint64(d.data[:8]) d.emptyWordsCount = binary.BigEndian.Uint64(d.data[8:16]) dictSize := binary.BigEndian.Uint64(d.data[16:24]) rootOffset := binary.BigEndian.Uint64(d.data[24:32]) cutoff := binary.BigEndian.Uint64(d.data[32:40]) data := d.data[40 : 40+dictSize] if dictSize > 0 { tree := buildHuffmanPattern(data, rootOffset, cutoff) var bitLen int if tree.maxDepth > 9 { bitLen = 9 } else { bitLen = tree.maxDepth } //fmt.Printf("pattern maxDepth=%d\n", tree.maxDepth) tableSize := 1 << bitLen d.dict = &patternTable{ bitLen: bitLen, patterns: make([][]byte, tableSize), lens: make([]byte, tableSize), ptrs: make([]*patternTable, tableSize), } buildPatternTable(tree, d.dict, 0, 0) } pos := 40 + dictSize dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8]) rootOffset = binary.BigEndian.Uint64(d.data[pos+8 : pos+16]) cutoff = binary.BigEndian.Uint64(d.data[pos+16 : pos+24]) data = d.data[pos+24 : pos+24+dictSize] if dictSize > 0 { tree := buildHuffmanPos(data, rootOffset, cutoff) var bitLen int if tree.maxDepth > 9 { bitLen = 9 } else { bitLen = tree.maxDepth } //fmt.Printf("pos maxDepth=%d\n", tree.maxDepth) tableSize := 1 << bitLen d.posDict = &posTable{ bitLen: bitLen, pos: make([]uint64, tableSize), lens: make([]byte, tableSize), ptrs: make([]*posTable, tableSize), } buildPosTable(tree, d.posDict, 0, 0) } d.wordsStart = pos + 24 + dictSize return d, nil } func buildHuffmanPos(data []byte, offset uint64, cutoff uint64) *huffmanNodePos { if offset < cutoff { pos, _ := binary.Uvarint(data[offset:]) return &huffmanNodePos{pos: pos, maxDepth: 0} } offsetZero, n := binary.Uvarint(data[offset:]) offsetOne, _ := binary.Uvarint(data[offset+uint64(n):]) t0 := buildHuffmanPos(data, offsetZero, cutoff) t1 := buildHuffmanPos(data, offsetOne, cutoff) var maxDepth int if t0.maxDepth > t1.maxDepth { maxDepth = t0.maxDepth + 1 } else { maxDepth = t1.maxDepth + 1 } return &huffmanNodePos{zero: t0, one: t1, maxDepth: maxDepth} } func buildHuffmanPattern(data []byte, offset uint64, cutoff uint64) *huffmanNodePattern { if offset < cutoff { l, n := binary.Uvarint(data[offset:]) return &huffmanNodePattern{pattern: data[offset+uint64(n) : offset+uint64(n)+l], maxDepth: 0} } offsetZero, n := binary.Uvarint(data[offset:]) offsetOne, _ := binary.Uvarint(data[offset+uint64(n):]) t0 := buildHuffmanPattern(data, offsetZero, cutoff) t1 := buildHuffmanPattern(data, offsetOne, cutoff) var maxDepth int if t0.maxDepth > t1.maxDepth { maxDepth = t0.maxDepth + 1 } else { maxDepth = t1.maxDepth + 1 } return &huffmanNodePattern{zero: t0, one: t1, maxDepth: maxDepth} } func buildPatternTable(tree *huffmanNodePattern, table *patternTable, code uint16, depth int) { if tree.zero == nil && tree.one == nil { if table.bitLen == depth { table.patterns[code] = tree.pattern //fmt.Printf(".[%b]%d=>[%s]\n", code, table.bitLen, tree.pattern) table.lens[code] = byte(depth) table.ptrs[code] = nil } else { codeStep := uint16(1) << depth codeFrom := code codeTo := code | (uint16(1) << table.bitLen) for c := codeFrom; c < codeTo; c += codeStep { table.patterns[c] = tree.pattern //fmt.Printf("*[%b]%d=>[%s]\n", c, table.bitLen, tree.pattern) table.lens[c] = byte(depth) table.ptrs[c] = nil } } return } if depth == 9 { var bitLen int if tree.maxDepth > 9 { bitLen = 9 } else { bitLen = tree.maxDepth } tableSize := 1 << bitLen newTable := &patternTable{ bitLen: bitLen, patterns: make([][]byte, tableSize), lens: make([]byte, tableSize), ptrs: make([]*patternTable, tableSize), } table.patterns[code] = nil table.lens[code] = byte(0) table.ptrs[code] = newTable buildPatternTable(tree, newTable, 0, 0) return } buildPatternTable(tree.zero, table, code, depth+1) buildPatternTable(tree.one, table, (uint16(1)<%d\n", code, table.bitLen, tree.pos) table.lens[code] = byte(depth) table.ptrs[code] = nil } else { codeStep := uint16(1) << depth codeFrom := code codeTo := code | (uint16(1) << table.bitLen) for c := codeFrom; c < codeTo; c += codeStep { table.pos[c] = tree.pos //fmt.Printf("*[%b]%d=>%d\n", c, table.bitLen, tree.pos) table.lens[c] = byte(depth) table.ptrs[c] = nil } } return } if depth == 9 { var bitLen int if tree.maxDepth > 9 { bitLen = 9 } else { bitLen = tree.maxDepth } tableSize := 1 << bitLen newTable := &posTable{ bitLen: bitLen, pos: make([]uint64, tableSize), lens: make([]byte, tableSize), ptrs: make([]*posTable, tableSize), } table.pos[code] = 0 table.lens[code] = byte(0) table.ptrs[code] = newTable buildPosTable(tree, newTable, 0, 0) return } buildPosTable(tree.zero, table, code, depth+1) buildPosTable(tree.one, table, (uint16(1)< 0 { g.dataP++ g.dataBit = 0 } } table := g.posDict if table.bitLen == 0 { return table.pos[0] } var l byte var pos uint64 for l == 0 { code := uint16(g.data[g.dataP]) >> g.dataBit if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) { code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit) } code &= (uint16(1) << table.bitLen) - 1 l = table.lens[code] if l == 0 { table = table.ptrs[code] g.dataBit += 9 } else { g.dataBit += int(l) pos = table.pos[code] } g.dataP += uint64(g.dataBit / 8) g.dataBit = g.dataBit % 8 } return pos } func (g *Getter) nextPattern() []byte { table := g.patternDict if table.bitLen == 0 { return table.patterns[0] } var l byte var pattern []byte for l == 0 { code := uint16(g.data[g.dataP]) >> g.dataBit if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) { code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit) } code &= (uint16(1) << table.bitLen) - 1 l = table.lens[code] if l == 0 { table = table.ptrs[code] g.dataBit += 9 } else { g.dataBit += int(l) pattern = table.patterns[code] } g.dataP += uint64(g.dataBit / 8) g.dataBit = g.dataBit % 8 } return pattern } func (d *Decompressor) Count() int { return int(d.wordsCount) } func (d *Decompressor) EmptyWordsCount() int { return int(d.emptyWordsCount) } // MakeGetter creates an object that can be used to access superstrings in the decompressor's file // Getter is not thread-safe, but there can be multiple getters used simultaneously and concurrently // for the same decompressor func (d *Decompressor) MakeGetter() *Getter { return &Getter{patternDict: d.dict, posDict: d.posDict, data: d.data[d.wordsStart:], fName: d.compressedFile} } func (g *Getter) Reset(offset uint64) { g.dataP = offset g.dataBit = 0 } func (g *Getter) HasNext() bool { return g.dataP < uint64(len(g.data)) } // Next extracts a compressed word from current offset in the file // and appends it to the given buf, returning the result of appending // After extracting next word, it moves to the beginning of the next one func (g *Getter) Next(buf []byte) ([]byte, uint64) { savePos := g.dataP l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return buf, g.dataP } bufPos := len(buf) // Tracking position in buf where to insert part of the word lastUncovered := len(buf) if len(buf)+int(l) > cap(buf) { newBuf := make([]byte, len(buf)+int(l)) copy(newBuf, buf) buf = newBuf } else { // Expand buffer buf = buf[:len(buf)+int(l)] } // Loop below fills in the patterns for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another copy(buf[bufPos:], g.nextPattern()) } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP = savePos g.dataBit = 0 g.nextPos(true /* clean */) // Reset the state of huffman reader bufPos = lastUncovered // Restore to the beginning of buf // Loop below fills the data which is not in the patterns for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) copy(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) postLoopPos += dif } lastUncovered = bufPos + len(g.nextPattern()) } if int(l) > lastUncovered { dif := l - uint64(lastUncovered) copy(buf[lastUncovered:l], g.data[postLoopPos:postLoopPos+dif]) postLoopPos += dif } g.dataP = postLoopPos g.dataBit = 0 return buf, postLoopPos } func (g *Getter) NextUncompressed() ([]byte, uint64) { l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return g.data[g.dataP:g.dataP], g.dataP } g.nextPos(false) if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } pos := g.dataP g.dataP += l return g.data[pos:g.dataP], g.dataP } // Skip moves offset to the next word and returns the new offset. func (g *Getter) Skip() uint64 { l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } return g.dataP } wordLen := int(l) var add uint64 var bufPos int var lastUncovered int for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 if wordLen < bufPos { panic(fmt.Sprintf("likely .idx is invalid: %s", g.fName)) } if bufPos > lastUncovered { add += uint64(bufPos - lastUncovered) } lastUncovered = bufPos + len(g.nextPattern()) } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if int(l) > lastUncovered { add += l - uint64(lastUncovered) } // Uncovered characters g.dataP += add return g.dataP } // Match returns true and next offset if the word at current offset fully matches the buf // returns false and current offset otherwise. func (g *Getter) Match(buf []byte) (bool, uint64) { savePos := g.dataP l := g.nextPos(true) l-- // because when create huffman tree we do ++ , because 0 is terminator lenBuf := len(buf) if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if lenBuf != 0 { g.dataP, g.dataBit = savePos, 0 } return lenBuf == 0, g.dataP } var bufPos int // In the first pass, we only check patterns for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 pattern := g.nextPattern() if lenBuf < bufPos+len(pattern) || !bytes.Equal(buf[bufPos:bufPos+len(pattern)], pattern) { g.dataP, g.dataBit = savePos, 0 return false, savePos } } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP, g.dataBit = savePos, 0 g.nextPos(true /* clean */) // Reset the state of huffman decoder // Second pass - we check spaces not covered by the patterns var lastUncovered int bufPos = 0 for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) { bufPos += int(pos) - 1 if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) if lenBuf < bufPos || !bytes.Equal(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) { g.dataP, g.dataBit = savePos, 0 return false, savePos } postLoopPos += dif } lastUncovered = bufPos + len(g.nextPattern()) } if int(l) > lastUncovered { dif := l - uint64(lastUncovered) if lenBuf < int(l) || !bytes.Equal(buf[lastUncovered:l], g.data[postLoopPos:postLoopPos+dif]) { g.dataP, g.dataBit = savePos, 0 return false, savePos } postLoopPos += dif } if lenBuf != int(l) { g.dataP, g.dataBit = savePos, 0 return false, savePos } g.dataP, g.dataBit = postLoopPos, 0 return true, postLoopPos } // MatchPrefix only checks if the word at the current offset has a buf prefix. Does not move offset to the next word. func (g *Getter) MatchPrefix(buf []byte) bool { savePos := g.dataP defer func() { g.dataP, g.dataBit = savePos, 0 }() l := g.nextPos(true /* clean */) l-- // because when create huffman tree we do ++ , because 0 is terminator lenBuf := len(buf) if l == 0 { if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } if lenBuf != 0 { g.dataP, g.dataBit = savePos, 0 } return lenBuf == 0 } var bufPos int // In the first pass, we only check patterns // Only run this loop as far as the prefix goes, there is no need to check further for pos := g.nextPos(false /* clean */); pos != 0 && bufPos < lenBuf; pos = g.nextPos(false) { bufPos += int(pos) - 1 pattern := g.nextPattern() var comparisonLen int if lenBuf < bufPos+len(pattern) { comparisonLen = lenBuf - bufPos } else { comparisonLen = len(pattern) } if !bytes.Equal(buf[bufPos:bufPos+comparisonLen], pattern[:comparisonLen]) { return false } } if g.dataBit > 0 { g.dataP++ g.dataBit = 0 } postLoopPos := g.dataP g.dataP, g.dataBit = savePos, 0 g.nextPos(true /* clean */) // Reset the state of huffman decoder // Second pass - we check spaces not covered by the patterns var lastUncovered int bufPos = 0 for pos := g.nextPos(false /* clean */); pos != 0 && lastUncovered < lenBuf; pos = g.nextPos(false) { bufPos += int(pos) - 1 patternLen := len(g.nextPattern()) if bufPos > lastUncovered { dif := uint64(bufPos - lastUncovered) var comparisonLen int if lenBuf < lastUncovered+int(dif) { comparisonLen = lenBuf - lastUncovered } else { comparisonLen = int(dif) } if !bytes.Equal(buf[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) { return false } postLoopPos += dif } lastUncovered = bufPos + patternLen } if lenBuf > lastUncovered && int(l) > lastUncovered { dif := l - uint64(lastUncovered) var comparisonLen int if lenBuf < int(l) { comparisonLen = lenBuf - lastUncovered } else { comparisonLen = int(dif) } if !bytes.Equal(buf[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) { return false } } return true }