erigon-pulse/core/forkid/forkid.go
Andrew Ashikhmin b38e17e393
Implement PIP-33: Napoli Hardfork (#8975)
Initial support of the upcoming Napoli hard fork on Polygon – see
[PIP-33](https://forum.polygon.technology/t/pip-33-napoli-upgrade). Per
[PIP-31](https://github.com/maticnetwork/Polygon-Improvement-Proposals/blob/main/PIPs/PIP-31.md),
it parallels the
[Cancun](https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md)
upgrade of Ethereum, but does not include
[EIP-4788](https://eips.ethereum.org/EIPS/eip-4788),
[EIP-4844](https://eips.ethereum.org/EIPS/eip-4844),
[EIP-7516](https://eips.ethereum.org/EIPS/eip-7516). In other words,
Napoli includes [EIP-1153](https://eips.ethereum.org/EIPS/eip-1153),
[EIP-5656](https://eips.ethereum.org/EIPS/eip-5656),
[EIP-6780](https://eips.ethereum.org/EIPS/eip-6780) from Cancun.

This PR implements
[PIP-31](https://github.com/maticnetwork/Polygon-Improvement-Proposals/blob/main/PIPs/PIP-31.md),
[PIP-16: Transaction Dependency
Data](https://github.com/maticnetwork/Polygon-Improvement-Proposals/blob/main/PIPs/PIP-16.md)
(by merging `ParallelUniverseBlock` into `NapoliBlock`; the bulk of
PIP-16 was implemented in PR #8037), and [PIP-27: Precompiled for
secp256r1 Curve
Support](https://github.com/maticnetwork/Polygon-Improvement-Proposals/blob/main/PIPs/PIP-27.md)
([EIP-7212](https://eips.ethereum.org/EIPS/eip-7212); see also
https://github.com/maticnetwork/bor/pull/1069 &
https://github.com/ethereum/go-ethereum/pull/27540).

---------

Co-authored-by: Anshal Shukla <shukla.anshal85@gmail.com>
2024-01-17 14:13:16 +01:00

271 lines
10 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
package forkid
import (
"encoding/binary"
"errors"
"hash/crc32"
"math"
"math/big"
"reflect"
"strings"
"github.com/ledgerwatch/log/v3"
"golang.org/x/exp/slices"
"github.com/ledgerwatch/erigon-lib/chain"
libcommon "github.com/ledgerwatch/erigon-lib/common"
)
var (
// ErrRemoteStale is returned by the validator if a remote fork checksum is a
// subset of our already applied forks, but the announced next fork block is
// not on our already passed chain.
ErrRemoteStale = errors.New("remote needs update")
// ErrLocalIncompatibleOrStale is returned by the validator if a remote fork
// checksum does not match any local checksum variation, signalling that the
// two chains have diverged in the past at some point (possibly at genesis).
ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update")
)
// ID is a fork identifier as defined by EIP-2124.
type ID struct {
Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers
Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known
}
// Filter is a fork id filter to validate a remotely advertised ID.
type Filter func(id ID) error
func NewIDFromForks(heightForks, timeForks []uint64, genesis libcommon.Hash, headHeight, headTime uint64) ID {
// Calculate the starting checksum from the genesis hash
hash := crc32.ChecksumIEEE(genesis[:])
// Calculate the current fork checksum and the next fork block
for _, fork := range heightForks {
if headHeight >= fork {
// Fork already passed, checksum the previous hash and the fork number
hash = checksumUpdate(hash, fork)
continue
}
return ID{Hash: checksumToBytes(hash), Next: fork}
}
var next uint64
for _, fork := range timeForks {
if headTime >= fork {
// Fork passed, checksum the previous hash and the fork time
hash = checksumUpdate(hash, fork)
continue
}
next = fork
break
}
return ID{Hash: checksumToBytes(hash), Next: next}
}
func NextForkHashFromForks(heightForks, timeForks []uint64, genesis libcommon.Hash, headHeight, headTime uint64) [4]byte {
id := NewIDFromForks(heightForks, timeForks, genesis, headHeight, headTime)
if id.Next == 0 {
return id.Hash
} else {
hash := binary.BigEndian.Uint32(id.Hash[:])
return checksumToBytes(checksumUpdate(hash, id.Next))
}
}
// NewFilterFromForks creates a filter that returns if a fork ID should be rejected or not
// based on the provided current head.
func NewFilterFromForks(heightForks, timeForks []uint64, genesis libcommon.Hash, headHeight, headTime uint64) Filter {
return newFilter(heightForks, timeForks, genesis, headHeight, headTime)
}
// NewStaticFilter creates a filter at block zero.
func NewStaticFilter(config *chain.Config, genesisHash libcommon.Hash, genesisTime uint64) Filter {
heightForks, timeForks := GatherForks(config, genesisTime)
return newFilter(heightForks, timeForks, genesisHash, 0 /* headHeight */, genesisTime)
}
// Simple heuristic returning true if the value is a Unix time after 2 Dec 2022.
// There are no block heights in the ballpark of 1.67 billion.
func forkIsTimeBased(fork uint64) bool {
return fork >= 1670000000
}
func newFilter(heightForks, timeForks []uint64, genesis libcommon.Hash, headHeight, headTime uint64) Filter {
var forks []uint64
forks = append(forks, heightForks...)
forks = append(forks, timeForks...)
// Calculate the all the valid fork hash and fork next combos
sums := make([][4]byte, len(forks)+1) // 0th is the genesis
hash := crc32.ChecksumIEEE(genesis[:])
sums[0] = checksumToBytes(hash)
for i, fork := range forks {
hash = checksumUpdate(hash, fork)
sums[i+1] = checksumToBytes(hash)
}
// Add two sentries to simplify the fork checks and don't require special
// casing the last one.
forks = append(forks, math.MaxUint64) // Last fork will never be passed
// Create a validator that will filter out incompatible chains
return func(id ID) error {
// Run the fork checksum validation ruleset:
// 1. If local and remote FORK_CSUM matches, compare local head to FORK_NEXT.
// The two nodes are in the same fork state currently. They might know
// of differing future forks, but that's not relevant until the fork
// triggers (might be postponed, nodes might be updated to match).
// 1a. A remotely announced but remotely not passed block is already passed
// locally, disconnect, since the chains are incompatible.
// 1b. No remotely announced fork; or not yet passed locally, connect.
// 2. If the remote FORK_CSUM is a subset of the local past forks and the
// remote FORK_NEXT matches with the locally following fork block number,
// connect.
// Remote node is currently syncing. It might eventually diverge from
// us, but at this current point in time we don't have enough information.
// 3. If the remote FORK_CSUM is a superset of the local past forks and can
// be completed with locally known future forks, connect.
// Local node is currently syncing. It might eventually diverge from
// the remote, but at this current point in time we don't have enough
// information.
// 4. Reject in all other cases.
for i, fork := range forks {
// If our head is beyond this fork, continue to the next (we have a dummy
// fork of maxuint64 as the last item to always fail this check eventually).
if headHeight > fork || (forkIsTimeBased(fork) && headTime > fork) {
continue
}
// Found the first unpassed fork block, check if our current state matches
// the remote checksum (rule #1).
if sums[i] == id.Hash {
// Fork checksum matched, check if a remote future fork block already passed
// locally without the local node being aware of it (rule #1a).
if id.Next > 0 {
if headHeight >= id.Next || (forkIsTimeBased(id.Next) && headTime >= id.Next) {
return ErrLocalIncompatibleOrStale
}
}
// Haven't passed locally a remote-only fork, accept the connection (rule #1b).
return nil
}
// The local and remote nodes are in different forks currently, check if the
// remote checksum is a subset of our local forks (rule #2).
for j := 0; j < i; j++ {
if sums[j] == id.Hash {
// Remote checksum is a subset, validate based on the announced next fork
if forks[j] != id.Next {
return ErrRemoteStale
}
return nil
}
}
// Remote chain is not a subset of our local one, check if it's a superset by
// any chance, signalling that we're simply out of sync (rule #3).
for j := i + 1; j < len(sums); j++ {
if sums[j] == id.Hash {
// Yay, remote checksum is a superset, ignore upcoming forks
return nil
}
}
// No exact, subset or superset match. We are on differing chains, reject.
return ErrLocalIncompatibleOrStale
}
log.Error("Impossible fork ID validation", "id", id)
return nil // Something's very wrong, accept rather than reject
}
}
// checksumUpdate calculates the next IEEE CRC32 checksum based on the previous
// one and a fork block number (equivalent to CRC32(original-blob || fork)).
func checksumUpdate(hash uint32, fork uint64) uint32 {
var blob [8]byte
binary.BigEndian.PutUint64(blob[:], fork)
return crc32.Update(hash, crc32.IEEETable, blob[:])
}
// checksumToBytes converts a uint32 checksum into a [4]byte array.
func checksumToBytes(hash uint32) [4]byte {
var blob [4]byte
binary.BigEndian.PutUint32(blob[:], hash)
return blob
}
// GatherForks gathers all the known forks and creates a sorted list out of them.
func GatherForks(config *chain.Config, genesisTime uint64) (heightForks []uint64, timeForks []uint64) {
// Gather all the fork block numbers via reflection
kind := reflect.TypeOf(chain.Config{})
conf := reflect.ValueOf(config).Elem()
for i := 0; i < kind.NumField(); i++ {
// Fetch the next field and skip non-fork rules
field := kind.Field(i)
time := false
if !strings.HasSuffix(field.Name, "Block") {
if !strings.HasSuffix(field.Name, "Time") {
continue
}
time = true
}
if field.Type != reflect.TypeOf(new(big.Int)) {
continue
}
// Extract the fork rule block number and aggregate it
rule := conf.Field(i).Interface().(*big.Int)
if rule != nil {
if time {
t := rule.Uint64()
if t > genesisTime {
timeForks = append(timeForks, t)
}
} else {
heightForks = append(heightForks, rule.Uint64())
}
}
}
if config.Aura != nil && config.Aura.PosdaoTransition != nil {
heightForks = append(heightForks, *config.Aura.PosdaoTransition)
}
if config.Bor != nil {
if config.Bor.GetAgraBlock() != nil {
heightForks = append(heightForks, config.Bor.GetAgraBlock().Uint64())
}
if config.Bor.GetNapoliBlock() != nil {
heightForks = append(heightForks, config.Bor.GetNapoliBlock().Uint64())
}
}
// Sort the fork block numbers & times to permit chronological XOR
slices.Sort(heightForks)
slices.Sort(timeForks)
// Deduplicate block numbers/times applying to multiple forks
heightForks = libcommon.RemoveDuplicatesFromSorted(heightForks)
timeForks = libcommon.RemoveDuplicatesFromSorted(timeForks)
// Skip any forks in block 0, that's the genesis ruleset
if len(heightForks) > 0 && heightForks[0] == 0 {
heightForks = heightForks[1:]
}
if len(timeForks) > 0 && timeForks[0] == 0 {
timeForks = timeForks[1:]
}
return heightForks, timeForks
}