erigon-pulse/core/vm/gas_table.go
Alex Sharov c293883ec0
evm: no interface (#8376)
after removal of tevm experiment - we left interfaces everywhere 
removing it for performance and for geth compatibility
2023-10-05 12:23:08 +07:00

505 lines
18 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"errors"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon-lib/common/math"
"github.com/ledgerwatch/erigon/core/vm/stack"
"github.com/ledgerwatch/erigon/params"
)
// memoryGasCost calculates the quadratic gas for memory expansion. It does so
// only for the memory region that is expanded, not the total memory.
func memoryGasCost(mem *Memory, newMemSize uint64) (uint64, error) {
if newMemSize == 0 {
return 0, nil
}
// The maximum that will fit in a uint64 is max_word_count - 1. Anything above
// that will result in an overflow. Additionally, a newMemSize which results in
// a newMemSizeWords larger than 0xFFFFFFFF will cause the square operation to
// overflow. The constant 0x1FFFFFFFE0 is the highest number that can be used
// without overflowing the gas calculation.
if newMemSize > 0x1FFFFFFFE0 {
return 0, ErrGasUintOverflow
}
newMemSizeWords := ToWordSize(newMemSize)
newMemSize = newMemSizeWords * 32
if newMemSize > uint64(mem.Len()) {
square := newMemSizeWords * newMemSizeWords
linCoef := newMemSizeWords * params.MemoryGas
quadCoef := square / params.QuadCoeffDiv
newTotalFee := linCoef + quadCoef
fee := newTotalFee - mem.lastGasCost
mem.lastGasCost = newTotalFee
return fee, nil
}
return 0, nil
}
// memoryCopierGas creates the gas functions for the following opcodes, and takes
// the stack position of the operand which determines the size of the data to copy
// as argument:
// CALLDATACOPY (stack position 2)
// CODECOPY (stack position 2)
// MCOPY (stack position 2)
// EXTCODECOPY (stack position 3)
// RETURNDATACOPY (stack position 2)
func memoryCopierGas(stackpos int) gasFunc {
return func(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
// Gas for expanding the memory
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
// And gas for copying data, charged per word at param.CopyGas
words, overflow := stack.Back(stackpos).Uint64WithOverflow()
if overflow {
return 0, ErrGasUintOverflow
}
if words, overflow = math.SafeMul(ToWordSize(words), params.CopyGas); overflow {
return 0, ErrGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, words); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
}
var (
gasCallDataCopy = memoryCopierGas(2)
gasCodeCopy = memoryCopierGas(2)
gasMcopy = memoryCopierGas(2)
gasExtCodeCopy = memoryCopierGas(3)
gasReturnDataCopy = memoryCopierGas(2)
)
func gasSStore(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
value, x := stack.Back(1), stack.Back(0)
key := libcommon.Hash(x.Bytes32())
var current uint256.Int
evm.IntraBlockState().GetState(contract.Address(), &key, &current)
// The legacy gas metering only takes into consideration the current state
// Legacy rules should be applied if we are in Petersburg (removal of EIP-1283)
// OR Constantinople is not active
if evm.ChainRules().IsPetersburg || !evm.ChainRules().IsConstantinople {
// This checks for 3 scenario's and calculates gas accordingly:
//
// 1. From a zero-value address to a non-zero value (NEW VALUE)
// 2. From a non-zero value address to a zero-value address (DELETE)
// 3. From a non-zero to a non-zero (CHANGE)
switch {
case current.IsZero() && !value.IsZero(): // 0 => non 0
return params.SstoreSetGas, nil
case !current.IsZero() && value.IsZero(): // non 0 => 0
evm.IntraBlockState().AddRefund(params.SstoreRefundGas)
return params.SstoreClearGas, nil
default: // non 0 => non 0 (or 0 => 0)
return params.SstoreResetGas, nil
}
}
// The new gas metering is based on net gas costs (EIP-1283):
//
// 1. If current value equals new value (this is a no-op), 200 gas is deducted.
// 2. If current value does not equal new value
// 2.1. If original value equals current value (this storage slot has not been changed by the current execution context)
// 2.1.1. If original value is 0, 20000 gas is deducted.
// 2.1.2. Otherwise, 5000 gas is deducted. If new value is 0, add 15000 gas to refund counter.
// 2.2. If original value does not equal current value (this storage slot is dirty), 200 gas is deducted. Apply both of the following clauses.
// 2.2.1. If original value is not 0
// 2.2.1.1. If current value is 0 (also means that new value is not 0), remove 15000 gas from refund counter. We can prove that refund counter will never go below 0.
// 2.2.1.2. If new value is 0 (also means that current value is not 0), add 15000 gas to refund counter.
// 2.2.2. If original value equals new value (this storage slot is reset)
// 2.2.2.1. If original value is 0, add 19800 gas to refund counter.
// 2.2.2.2. Otherwise, add 4800 gas to refund counter.
if current.Eq(value) { // noop (1)
return params.NetSstoreNoopGas, nil
}
var original uint256.Int
evm.IntraBlockState().GetCommittedState(contract.Address(), &key, &original)
if original == current {
if original.IsZero() { // create slot (2.1.1)
return params.NetSstoreInitGas, nil
}
if value.IsZero() { // delete slot (2.1.2b)
evm.IntraBlockState().AddRefund(params.NetSstoreClearRefund)
}
return params.NetSstoreCleanGas, nil // write existing slot (2.1.2)
}
if !original.IsZero() {
if current.IsZero() { // recreate slot (2.2.1.1)
evm.IntraBlockState().SubRefund(params.NetSstoreClearRefund)
} else if value.IsZero() { // delete slot (2.2.1.2)
evm.IntraBlockState().AddRefund(params.NetSstoreClearRefund)
}
}
if original.Eq(value) {
if original.IsZero() { // reset to original inexistent slot (2.2.2.1)
evm.IntraBlockState().AddRefund(params.NetSstoreResetClearRefund)
} else { // reset to original existing slot (2.2.2.2)
evm.IntraBlockState().AddRefund(params.NetSstoreResetRefund)
}
}
return params.NetSstoreDirtyGas, nil
}
// 0. If *gasleft* is less than or equal to 2300, fail the current call.
// 1. If current value equals new value (this is a no-op), SLOAD_GAS is deducted.
// 2. If current value does not equal new value:
// 2.1. If original value equals current value (this storage slot has not been changed by the current execution context):
// 2.1.1. If original value is 0, SSTORE_SET_GAS (20K) gas is deducted.
// 2.1.2. Otherwise, SSTORE_RESET_GAS gas is deducted. If new value is 0, add SSTORE_CLEARS_SCHEDULE to refund counter.
// 2.2. If original value does not equal current value (this storage slot is dirty), SLOAD_GAS gas is deducted. Apply both of the following clauses:
// 2.2.1. If original value is not 0:
// 2.2.1.1. If current value is 0 (also means that new value is not 0), subtract SSTORE_CLEARS_SCHEDULE gas from refund counter.
// 2.2.1.2. If new value is 0 (also means that current value is not 0), add SSTORE_CLEARS_SCHEDULE gas to refund counter.
// 2.2.2. If original value equals new value (this storage slot is reset):
// 2.2.2.1. If original value is 0, add SSTORE_SET_GAS - SLOAD_GAS to refund counter.
// 2.2.2.2. Otherwise, add SSTORE_RESET_GAS - SLOAD_GAS gas to refund counter.
func gasSStoreEIP2200(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
// If we fail the minimum gas availability invariant, fail (0)
if contract.Gas <= params.SstoreSentryGasEIP2200 {
return 0, errors.New("not enough gas for reentrancy sentry")
}
// Gas sentry honoured, do the actual gas calculation based on the stored value
value, x := stack.Back(1), stack.Back(0)
key := libcommon.Hash(x.Bytes32())
var current uint256.Int
evm.IntraBlockState().GetState(contract.Address(), &key, &current)
if current.Eq(value) { // noop (1)
return params.SloadGasEIP2200, nil
}
var original uint256.Int
evm.IntraBlockState().GetCommittedState(contract.Address(), &key, &original)
if original == current {
if original.IsZero() { // create slot (2.1.1)
return params.SstoreSetGasEIP2200, nil
}
if value.IsZero() { // delete slot (2.1.2b)
evm.IntraBlockState().AddRefund(params.SstoreClearsScheduleRefundEIP2200)
}
return params.SstoreResetGasEIP2200, nil // write existing slot (2.1.2)
}
if !original.IsZero() {
if current.IsZero() { // recreate slot (2.2.1.1)
evm.IntraBlockState().SubRefund(params.SstoreClearsScheduleRefundEIP2200)
} else if value.IsZero() { // delete slot (2.2.1.2)
evm.IntraBlockState().AddRefund(params.SstoreClearsScheduleRefundEIP2200)
}
}
if original.Eq(value) {
if original.IsZero() { // reset to original inexistent slot (2.2.2.1)
evm.IntraBlockState().AddRefund(params.SstoreSetGasEIP2200 - params.SloadGasEIP2200)
} else { // reset to original existing slot (2.2.2.2)
evm.IntraBlockState().AddRefund(params.SstoreResetGasEIP2200 - params.SloadGasEIP2200)
}
}
return params.SloadGasEIP2200, nil // dirty update (2.2)
}
func makeGasLog(n uint64) gasFunc {
return func(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
requestedSize, overflow := stack.Back(1).Uint64WithOverflow()
if overflow {
return 0, ErrGasUintOverflow
}
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, params.LogGas); overflow {
return 0, ErrGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, n*params.LogTopicGas); overflow {
return 0, ErrGasUintOverflow
}
var memorySizeGas uint64
if memorySizeGas, overflow = math.SafeMul(requestedSize, params.LogDataGas); overflow {
return 0, ErrGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, memorySizeGas); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
}
func gasKeccak256(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
wordGas, overflow := stack.Back(1).Uint64WithOverflow()
if overflow {
return 0, ErrGasUintOverflow
}
if wordGas, overflow = math.SafeMul(ToWordSize(wordGas), params.Keccak256WordGas); overflow {
return 0, ErrGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, wordGas); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
// pureMemoryGascost is used by several operations, which aside from their
// static cost have a dynamic cost which is solely based on the memory
// expansion
func pureMemoryGascost(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
return memoryGasCost(mem, memorySize)
}
var (
gasReturn = pureMemoryGascost
gasRevert = pureMemoryGascost
gasMLoad = pureMemoryGascost
gasMStore8 = pureMemoryGascost
gasMStore = pureMemoryGascost
gasCreate = pureMemoryGascost
)
func gasCreate2(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
len, overflow := stack.Back(2).Uint64WithOverflow()
if overflow {
return 0, ErrGasUintOverflow
}
numWords := ToWordSize(len)
wordGas, overflow := math.SafeMul(numWords, params.Keccak256WordGas)
if overflow {
return 0, ErrGasUintOverflow
}
gas, overflow = math.SafeAdd(gas, wordGas)
if overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasCreateEip3860(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
len, overflow := stack.Back(2).Uint64WithOverflow()
if overflow || len > params.MaxInitCodeSize {
return 0, ErrGasUintOverflow
}
numWords := ToWordSize(len)
// Since size <= params.MaxInitCodeSize, this multiplication cannot overflow
wordGas := params.InitCodeWordGas * numWords
gas, overflow = math.SafeAdd(gas, wordGas)
if overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasCreate2Eip3860(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
len, overflow := stack.Back(2).Uint64WithOverflow()
if overflow || len > params.MaxInitCodeSize {
return 0, ErrGasUintOverflow
}
numWords := ToWordSize(len)
// Since size <= params.MaxInitCodeSize, this multiplication cannot overflow
wordGas := (params.InitCodeWordGas + params.Keccak256WordGas) * numWords
gas, overflow = math.SafeAdd(gas, wordGas)
if overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasExpFrontier(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
expByteLen := uint64(libcommon.BitLenToByteLen(stack.Data[stack.Len()-2].BitLen()))
var (
gas = expByteLen * params.ExpByteFrontier // no overflow check required. Max is 256 * ExpByte gas
overflow bool
)
if gas, overflow = math.SafeAdd(gas, params.ExpGas); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasExpEIP160(_ *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
expByteLen := uint64(libcommon.BitLenToByteLen(stack.Data[stack.Len()-2].BitLen()))
var (
gas = expByteLen * params.ExpByteEIP160 // no overflow check required. Max is 256 * ExpByte gas
overflow bool
)
if gas, overflow = math.SafeAdd(gas, params.ExpGas); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasCall(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
var (
gas uint64
transfersValue = !stack.Back(2).IsZero()
address = libcommon.Address(stack.Back(1).Bytes20())
)
if evm.ChainRules().IsSpuriousDragon {
if transfersValue && evm.IntraBlockState().Empty(address) {
gas += params.CallNewAccountGas
}
} else if !evm.IntraBlockState().Exist(address) {
gas += params.CallNewAccountGas
}
if transfersValue {
gas += params.CallValueTransferGas
}
memoryGas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, memoryGas); overflow {
return 0, ErrGasUintOverflow
}
var callGasTemp uint64
callGasTemp, err = callGas(evm.ChainRules().IsTangerineWhistle, contract.Gas, gas, stack.Back(0))
evm.SetCallGasTemp(callGasTemp)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, callGasTemp); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasCallCode(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
memoryGas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var (
gas uint64
overflow bool
)
if !stack.Back(2).IsZero() {
gas += params.CallValueTransferGas
}
if gas, overflow = math.SafeAdd(gas, memoryGas); overflow {
return 0, ErrGasUintOverflow
}
var callGasTemp uint64
callGasTemp, err = callGas(evm.ChainRules().IsTangerineWhistle, contract.Gas, gas, stack.Back(0))
evm.SetCallGasTemp(callGasTemp)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, callGasTemp); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasDelegateCall(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var callGasTemp uint64
callGasTemp, err = callGas(evm.ChainRules().IsTangerineWhistle, contract.Gas, gas, stack.Back(0))
evm.SetCallGasTemp(callGasTemp)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, callGasTemp); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasStaticCall(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var callGasTemp uint64
callGasTemp, err = callGas(evm.ChainRules().IsTangerineWhistle, contract.Gas, gas, stack.Back(0))
evm.SetCallGasTemp(callGasTemp)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, callGasTemp); overflow {
return 0, ErrGasUintOverflow
}
return gas, nil
}
func gasSelfdestruct(evm *EVM, contract *Contract, stack *stack.Stack, mem *Memory, memorySize uint64) (uint64, error) {
var gas uint64
// TangerineWhistle (EIP150) gas reprice fork:
if evm.ChainRules().IsTangerineWhistle {
gas = params.SelfdestructGasEIP150
var address = libcommon.Address(stack.Back(0).Bytes20())
if evm.ChainRules().IsSpuriousDragon {
// if empty and transfers value
if evm.IntraBlockState().Empty(address) && !evm.IntraBlockState().GetBalance(contract.Address()).IsZero() {
gas += params.CreateBySelfdestructGas
}
} else if !evm.IntraBlockState().Exist(address) {
gas += params.CreateBySelfdestructGas
}
}
if !evm.IntraBlockState().HasSelfdestructed(contract.Address()) {
evm.IntraBlockState().AddRefund(params.SelfdestructRefundGas)
}
return gas, nil
}