erigon-pulse/erigon-lib/pedersen_hash/prime_field_element.cc
battlmonstr 231e468e19 Add 'erigon-lib/' from commit '93d9c9d9fe4bd8a49f7a98a6bce0f0da7094c7d3'
git-subtree-dir: erigon-lib
git-subtree-mainline: 3c8cbda809
git-subtree-split: 93d9c9d9fe
2023-09-20 14:50:25 +02:00

103 lines
3.9 KiB
C++

#include "prime_field_element.h"
namespace starkware {
PrimeFieldElement PrimeFieldElement::RandomElement(Prng* prng) {
constexpr size_t kMostSignificantLimb = ValueType::LimbCount() - 1;
static_assert(
kModulus[kMostSignificantLimb] != 0, "We assume kModulus[kMostSignificantLimb] is not zero");
constexpr uint64_t kBitsMask = (Pow2(Log2Floor(kModulus[kMostSignificantLimb]) + 1)) - 1;
PrimeFieldElement random_element = PrimeFieldElement::Zero();
do {
random_element.value_ = ValueType::RandomBigInt(prng);
random_element.value_[kMostSignificantLimb] &= kBitsMask;
} while (random_element.value_ >= kModulus); // Required to enforce uniformity.
return random_element;
}
PrimeFieldElement PrimeFieldElement::Pow(const std::vector<bool>& exponent_bits) const {
return GenericPow(
*this, exponent_bits, PrimeFieldElement::One(),
[](const PrimeFieldElement& multiplier, PrimeFieldElement* dst) {
*dst = *dst * multiplier;
});
}
PrimeFieldElement PrimeFieldElement::Pow(const uint64_t exponent) const {
return Pow(BigInt<1>(exponent).ToBoolVector());
}
bool PrimeFieldElement::IsSquare() const {
if (*this == PrimeFieldElement::Zero()) {
return true;
}
// value is a square if and only if value^((p-1) / 2) = 1.
return Pow(kHalfMultiplicativeGroupSize.ToBoolVector()) == PrimeFieldElement::One();
}
PrimeFieldElement PrimeFieldElement::Sqrt() const {
if (*this == PrimeFieldElement::Zero()) {
return PrimeFieldElement::Zero();
}
// We use the following algorithm to compute the square root of the element:
// Let v be the input, let +r and -r be the roots of v and consider the ring
// R := F[x] / (x^2 - v).
//
// This ring is isomorphic to the ring F x F where the isomorphism is given by the map
// a*x + b --> (ar + b, -ar + b) (recall that we don't know r, so we cannot compute this map).
//
// Pick a random element x + b in R, and compute (x + b)^((p-1)/2). Let's say that the result is
// c*x + d.
// Taking a random element in F to the power of (p-1)/2 gives +1 or -1 with probability
// 0.5. Since R is isomorphic to F x F (where multiplication is pointwise), the result of the
// computation will be one of the four pairs:
// (+1, +1), (-1, -1), (+1, -1), (-1, +1).
//
// If the result is (+1, +1) or (-1, -1) (which are the elements (0*x + 1) and (0*x - 1) in R) -
// try again with another random element.
//
// If the result is (+1, -1) then cr + d = 1 and -cr + d = -1. Therefore r = c^{-1} and d=0. In
// the second case -r = c^{-1}. In both cases c^{-1} will be the returned root.
// Store an element in R as a pair: first * x + second.
using RingElement = std::pair<PrimeFieldElement, PrimeFieldElement>;
const RingElement one{PrimeFieldElement::Zero(), PrimeFieldElement::One()};
const RingElement minus_one{PrimeFieldElement::Zero(), -PrimeFieldElement::One()};
auto mult = [this](const RingElement& multiplier, RingElement* dst) {
// Compute res * multiplier in the ring.
auto res_first = multiplier.first * dst->second + multiplier.second * dst->first;
auto res_second = multiplier.first * dst->first * *this + multiplier.second * dst->second;
*dst = {res_first, res_second};
};
// Compute q = (p - 1) / 2 and get its bits.
const std::vector<bool> q_bits = kHalfMultiplicativeGroupSize.ToBoolVector();
Prng prng;
while (true) {
// Pick a random element (x + b) in R.
RingElement random_element{PrimeFieldElement::One(), PrimeFieldElement::RandomElement(&prng)};
// Compute the exponentiation: random_element ^ ((p-1) / 2).
RingElement res = GenericPow(random_element, q_bits, one, mult);
// If res is either 1 or -1, try again.
if (res == one || res == minus_one) {
continue;
}
const PrimeFieldElement root = res.first.Inverse();
ASSERT(root * root == *this, "value does not have a square root.");
return root;
}
}
} // namespace starkware