erigon-pulse/compress/decompress.go
Alex Sharov 95623f4aa5
faster opening of snapshots and indices (#1025)
- mostly by MADV_SEQUENTIAL during opening
2023-06-19 04:34:12 +00:00

820 lines
22 KiB
Go

/*
Copyright 2022 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package compress
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"path/filepath"
"strconv"
"time"
"github.com/ledgerwatch/erigon-lib/common/dbg"
"github.com/ledgerwatch/erigon-lib/mmap"
"github.com/ledgerwatch/log/v3"
)
type word []byte // plain text word associated with code from dictionary
type codeword struct {
pattern *word // Pattern corresponding to entries
ptr *patternTable // pointer to deeper level tables
code uint16 // code associated with that word
len byte // Number of bits in the codes
}
type patternTable struct {
patterns []*codeword
bitLen int // Number of bits to lookup in the table
}
func newPatternTable(bitLen int) *patternTable {
pt := &patternTable{
bitLen: bitLen,
}
if bitLen <= condensePatternTableBitThreshold {
pt.patterns = make([]*codeword, 1<<pt.bitLen)
}
return pt
}
func (pt *patternTable) insertWord(cw *codeword) {
if pt.bitLen <= condensePatternTableBitThreshold {
codeStep := uint16(1) << uint16(cw.len)
codeFrom, codeTo := cw.code, cw.code+codeStep
if pt.bitLen != int(cw.len) && cw.len > 0 {
codeTo = codeFrom | (uint16(1) << pt.bitLen)
}
for c := codeFrom; c < codeTo; c += codeStep {
pt.patterns[c] = cw
}
return
}
pt.patterns = append(pt.patterns, cw)
}
func (pt *patternTable) condensedTableSearch(code uint16) *codeword {
if pt.bitLen <= condensePatternTableBitThreshold {
return pt.patterns[code]
}
for _, cur := range pt.patterns {
if cur.code == code {
return cur
}
d := code - cur.code
if d&1 != 0 {
continue
}
if checkDistance(int(cur.len), int(d)) {
return cur
}
}
return nil
}
type posTable struct {
pos []uint64
lens []byte
ptrs []*posTable
bitLen int
}
// Decompressor provides access to the superstrings in a file produced by a compressor
type Decompressor struct {
f *os.File
mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap)
dict *patternTable
posDict *posTable
mmapHandle1 []byte // mmap handle for unix (this is used to close mmap)
data []byte // slice of correct size for the decompressor to work with
wordsStart uint64 // Offset of whether the superstrings actually start
size int64
modTime time.Time
wordsCount uint64
emptyWordsCount uint64
filePath, fileName string
}
// Tables with bitlen greater than threshold will be condensed.
// Condensing reduces size of decompression table but leads to slower reads.
// To disable condesning at all set to 9 (we dont use tables larger than 2^9)
// To enable condensing for tables of size larger 64 = 6
// for all tables = 0
// There is no sense to condense tables of size [1 - 64] in terms of performance
//
// Should be set before calling NewDecompression.
var condensePatternTableBitThreshold = 9
func init() {
v, _ := os.LookupEnv("DECOMPRESS_CONDENSITY")
if v != "" {
i, err := strconv.Atoi(v)
if err != nil {
panic(err)
}
if i < 3 || i > 9 {
panic("DECOMPRESS_CONDENSITY: only numbers in range 3-9 are acceptable ")
}
condensePatternTableBitThreshold = i
fmt.Printf("set DECOMPRESS_CONDENSITY to %d\n", i)
}
}
func SetDecompressionTableCondensity(fromBitSize int) {
condensePatternTableBitThreshold = fromBitSize
}
func NewDecompressor(compressedFilePath string) (d *Decompressor, err error) {
_, fName := filepath.Split(compressedFilePath)
d = &Decompressor{
filePath: compressedFilePath,
fileName: fName,
}
defer func() {
if rec := recover(); rec != nil {
err = fmt.Errorf("decompressing file: %s, %+v, trace: %s", compressedFilePath, rec, dbg.Stack())
}
}()
d.f, err = os.Open(compressedFilePath)
if err != nil {
return nil, err
}
var stat os.FileInfo
if stat, err = d.f.Stat(); err != nil {
return nil, err
}
d.size = stat.Size()
if d.size < 32 {
return nil, fmt.Errorf("compressed file is too short: %d", d.size)
}
d.modTime = stat.ModTime()
if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, int(d.size)); err != nil {
return nil, err
}
// read patterns from file
d.data = d.mmapHandle1[:d.size]
defer d.EnableReadAhead().DisableReadAhead() //speedup opening on slow drives
d.wordsCount = binary.BigEndian.Uint64(d.data[:8])
d.emptyWordsCount = binary.BigEndian.Uint64(d.data[8:16])
dictSize := binary.BigEndian.Uint64(d.data[16:24])
data := d.data[24 : 24+dictSize]
var depths []uint64
var patterns [][]byte
var i uint64
var patternMaxDepth uint64
for i < dictSize {
d, ns := binary.Uvarint(data[i:])
if d > 64 { // mainnet has maxDepth 31
return nil, fmt.Errorf("dictionary is invalid: patternMaxDepth=%d", d)
}
depths = append(depths, d)
if d > patternMaxDepth {
patternMaxDepth = d
}
i += uint64(ns)
l, n := binary.Uvarint(data[i:])
i += uint64(n)
patterns = append(patterns, data[i:i+l])
//fmt.Printf("depth = %d, pattern = [%x]\n", d, data[i:i+l])
i += l
}
if dictSize > 0 {
var bitLen int
if patternMaxDepth > 9 {
bitLen = 9
} else {
bitLen = int(patternMaxDepth)
}
// fmt.Printf("pattern maxDepth=%d\n", tree.maxDepth)
d.dict = newPatternTable(bitLen)
buildCondensedPatternTable(d.dict, depths, patterns, 0, 0, 0, patternMaxDepth)
}
// read positions
pos := 24 + dictSize
dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8])
data = d.data[pos+8 : pos+8+dictSize]
var posDepths []uint64
var poss []uint64
var posMaxDepth uint64
i = 0
for i < dictSize {
d, ns := binary.Uvarint(data[i:])
if d > 2048 {
return nil, fmt.Errorf("dictionary is invalid: posMaxDepth=%d", d)
}
posDepths = append(posDepths, d)
if d > posMaxDepth {
posMaxDepth = d
}
i += uint64(ns)
pos, n := binary.Uvarint(data[i:])
i += uint64(n)
poss = append(poss, pos)
}
if dictSize > 0 {
var bitLen int
if posMaxDepth > 9 {
bitLen = 9
} else {
bitLen = int(posMaxDepth)
}
//fmt.Printf("pos maxDepth=%d\n", tree.maxDepth)
tableSize := 1 << bitLen
d.posDict = &posTable{
bitLen: bitLen,
pos: make([]uint64, tableSize),
lens: make([]byte, tableSize),
ptrs: make([]*posTable, tableSize),
}
buildPosTable(posDepths, poss, d.posDict, 0, 0, 0, posMaxDepth)
}
d.wordsStart = pos + 8 + dictSize
return d, nil
}
func buildCondensedPatternTable(table *patternTable, depths []uint64, patterns [][]byte, code uint16, bits int, depth uint64, maxDepth uint64) int {
if len(depths) == 0 {
return 0
}
if depth == depths[0] {
pattern := word(patterns[0])
//fmt.Printf("depth=%d, maxDepth=%d, code=[%b], codeLen=%d, pattern=[%x]\n", depth, maxDepth, code, bits, pattern)
cw := &codeword{code: code, pattern: &pattern, len: byte(bits), ptr: nil}
table.insertWord(cw)
return 1
}
if bits == 9 {
var bitLen int
if maxDepth > 9 {
bitLen = 9
} else {
bitLen = int(maxDepth)
}
cw := &codeword{code: code, pattern: nil, len: byte(0), ptr: newPatternTable(bitLen)}
table.insertWord(cw)
return buildCondensedPatternTable(cw.ptr, depths, patterns, 0, 0, depth, maxDepth)
}
b0 := buildCondensedPatternTable(table, depths, patterns, code, bits+1, depth+1, maxDepth-1)
return b0 + buildCondensedPatternTable(table, depths[b0:], patterns[b0:], (uint16(1)<<bits)|code, bits+1, depth+1, maxDepth-1)
}
func buildPosTable(depths []uint64, poss []uint64, table *posTable, code uint16, bits int, depth uint64, maxDepth uint64) int {
if len(depths) == 0 {
return 0
}
if depth == depths[0] {
p := poss[0]
//fmt.Printf("depth=%d, maxDepth=%d, code=[%b], codeLen=%d, pos=%d\n", depth, maxDepth, code, bits, p)
if table.bitLen == bits {
table.pos[code] = p
table.lens[code] = byte(bits)
table.ptrs[code] = nil
} else {
codeStep := uint16(1) << bits
codeFrom := code
codeTo := code | (uint16(1) << table.bitLen)
for c := codeFrom; c < codeTo; c += codeStep {
table.pos[c] = p
table.lens[c] = byte(bits)
table.ptrs[c] = nil
}
}
return 1
}
if bits == 9 {
var bitLen int
if maxDepth > 9 {
bitLen = 9
} else {
bitLen = int(maxDepth)
}
tableSize := 1 << bitLen
newTable := &posTable{
bitLen: bitLen,
pos: make([]uint64, tableSize),
lens: make([]byte, tableSize),
ptrs: make([]*posTable, tableSize),
}
table.pos[code] = 0
table.lens[code] = byte(0)
table.ptrs[code] = newTable
return buildPosTable(depths, poss, newTable, 0, 0, depth, maxDepth)
}
b0 := buildPosTable(depths, poss, table, code, bits+1, depth+1, maxDepth-1)
return b0 + buildPosTable(depths[b0:], poss[b0:], table, (uint16(1)<<bits)|code, bits+1, depth+1, maxDepth-1)
}
func (d *Decompressor) Size() int64 {
return d.size
}
func (d *Decompressor) ModTime() time.Time {
return d.modTime
}
func (d *Decompressor) Close() error {
if err := mmap.Munmap(d.mmapHandle1, d.mmapHandle2); err != nil {
log.Trace("unmap", "err", err, "file", d.FileName())
}
if err := d.f.Close(); err != nil {
return err
}
return nil
}
func (d *Decompressor) FilePath() string { return d.filePath }
func (d *Decompressor) FileName() string { return d.fileName }
// WithReadAhead - Expect read in sequential order. (Hence, pages in the given range can be aggressively read ahead, and may be freed soon after they are accessed.)
func (d *Decompressor) WithReadAhead(f func() error) error {
if d == nil || d.mmapHandle1 == nil {
return nil
}
_ = mmap.MadviseSequential(d.mmapHandle1)
//_ = mmap.MadviseWillNeed(d.mmapHandle1)
defer mmap.MadviseRandom(d.mmapHandle1)
return f()
}
// DisableReadAhead - usage: `defer d.EnableReadAhead().DisableReadAhead()`. Please don't use this funcs without `defer` to avoid leak.
func (d *Decompressor) DisableReadAhead() {
if d == nil || d.mmapHandle1 == nil {
return
}
_ = mmap.MadviseRandom(d.mmapHandle1)
}
func (d *Decompressor) EnableReadAhead() *Decompressor {
if d == nil || d.mmapHandle1 == nil {
return d
}
_ = mmap.MadviseSequential(d.mmapHandle1)
return d
}
func (d *Decompressor) EnableMadvNormal() *Decompressor {
if d == nil || d.mmapHandle1 == nil {
return d
}
_ = mmap.MadviseNormal(d.mmapHandle1)
return d
}
func (d *Decompressor) EnableWillNeed() *Decompressor {
if d == nil || d.mmapHandle1 == nil {
return d
}
_ = mmap.MadviseWillNeed(d.mmapHandle1)
return d
}
// Getter represent "reader" or "interator" that can move accross the data of the decompressor
// The full state of the getter can be captured by saving dataP, and dataBit
type Getter struct {
patternDict *patternTable
posDict *posTable
fName string
data []byte
dataP uint64
dataBit int // Value 0..7 - position of the bit
trace bool
}
func (g *Getter) Trace(t bool) { g.trace = t }
func (g *Getter) FileName() string { return g.fName }
func (g *Getter) nextPos(clean bool) uint64 {
if clean {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
}
table := g.posDict
if table.bitLen == 0 {
return table.pos[0]
}
var l byte
var pos uint64
for l == 0 {
code := uint16(g.data[g.dataP]) >> g.dataBit
if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) {
code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit)
}
code &= (uint16(1) << table.bitLen) - 1
l = table.lens[code]
if l == 0 {
table = table.ptrs[code]
g.dataBit += 9
} else {
g.dataBit += int(l)
pos = table.pos[code]
}
g.dataP += uint64(g.dataBit / 8)
g.dataBit = g.dataBit % 8
}
return pos
}
func (g *Getter) nextPattern() []byte {
table := g.patternDict
if table.bitLen == 0 {
return *table.patterns[0].pattern
}
var l byte
var pattern []byte
for l == 0 {
code := uint16(g.data[g.dataP]) >> g.dataBit
if 8-g.dataBit < table.bitLen && int(g.dataP)+1 < len(g.data) {
code |= uint16(g.data[g.dataP+1]) << (8 - g.dataBit)
}
code &= (uint16(1) << table.bitLen) - 1
cw := table.condensedTableSearch(code)
l = cw.len
if l == 0 {
table = cw.ptr
g.dataBit += 9
} else {
g.dataBit += int(l)
pattern = *cw.pattern
}
g.dataP += uint64(g.dataBit / 8)
g.dataBit = g.dataBit % 8
}
return pattern
}
var condensedWordDistances = buildCondensedWordDistances()
func checkDistance(power int, d int) bool {
for _, dist := range condensedWordDistances[power] {
if dist == d {
return true
}
}
return false
}
func buildCondensedWordDistances() [][]int {
dist2 := make([][]int, 10)
for i := 1; i <= 9; i++ {
dl := make([]int, 0)
for j := 1 << i; j < 512; j += 1 << i {
dl = append(dl, j)
}
dist2[i] = dl
}
return dist2
}
func (g *Getter) Size() int {
return len(g.data)
}
func (d *Decompressor) Count() int { return int(d.wordsCount) }
func (d *Decompressor) EmptyWordsCount() int { return int(d.emptyWordsCount) }
// MakeGetter creates an object that can be used to access superstrings in the decompressor's file
// Getter is not thread-safe, but there can be multiple getters used simultaneously and concurrently
// for the same decompressor
func (d *Decompressor) MakeGetter() *Getter {
return &Getter{
posDict: d.posDict,
data: d.data[d.wordsStart:],
patternDict: d.dict,
fName: d.fileName,
}
}
func (g *Getter) Reset(offset uint64) {
g.dataP = offset
g.dataBit = 0
}
func (g *Getter) HasNext() bool {
return g.dataP < uint64(len(g.data))
}
// Next extracts a compressed word from current offset in the file
// and appends it to the given buf, returning the result of appending
// After extracting next word, it moves to the beginning of the next one
func (g *Getter) Next(buf []byte) ([]byte, uint64) {
defer func() {
if rec := recover(); rec != nil {
panic(fmt.Sprintf("file: %s, %s, %s", g.fName, rec, dbg.Stack()))
}
}()
savePos := g.dataP
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return buf, g.dataP
}
bufPos := len(buf) // Tracking position in buf where to insert part of the word
lastUncovered := len(buf)
if len(buf)+int(wordLen) > cap(buf) {
newBuf := make([]byte, len(buf)+int(wordLen))
copy(newBuf, buf)
buf = newBuf
} else {
// Expand buffer
buf = buf[:len(buf)+int(wordLen)]
}
// Loop below fills in the patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
pt := g.nextPattern()
copy(buf[bufPos:], pt)
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP = savePos
g.dataBit = 0
g.nextPos(true /* clean */) // Reset the state of huffman reader
bufPos = lastUncovered // Restore to the beginning of buf
// Loop below fills the data which is not in the patterns
for pos := g.nextPos(false); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
copy(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
copy(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
}
g.dataP = postLoopPos
g.dataBit = 0
return buf, postLoopPos
}
func (g *Getter) NextUncompressed() ([]byte, uint64) {
defer func() {
if rec := recover(); rec != nil {
panic(fmt.Sprintf("file: %s, %s, %s", g.fName, rec, dbg.Stack()))
}
}()
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.data[g.dataP:g.dataP], g.dataP
}
g.nextPos(false)
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
pos := g.dataP
g.dataP += wordLen
return g.data[pos:g.dataP], g.dataP
}
// Skip moves offset to the next word and returns the new offset.
func (g *Getter) Skip() uint64 {
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
if l == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.dataP
}
wordLen := int(l)
var add uint64
var bufPos int
var lastUncovered int
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if wordLen < bufPos {
panic(fmt.Sprintf("likely .idx is invalid: %s", g.fName))
}
if bufPos > lastUncovered {
add += uint64(bufPos - lastUncovered)
}
lastUncovered = bufPos + len(g.nextPattern())
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if int(l) > lastUncovered {
add += l - uint64(lastUncovered)
}
// Uncovered characters
g.dataP += add
return g.dataP
}
func (g *Getter) SkipUncompressed() uint64 {
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
if wordLen == 0 {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
return g.dataP
}
g.nextPos(false)
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
g.dataP += wordLen
return g.dataP
}
// Match returns true and next offset if the word at current offset fully matches the buf
// returns false and current offset otherwise.
func (g *Getter) Match(buf []byte) (bool, uint64) {
savePos := g.dataP
wordLen := g.nextPos(true)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
lenBuf := len(buf)
if wordLen == 0 || int(wordLen) != lenBuf {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if lenBuf != 0 {
g.dataP, g.dataBit = savePos, 0
}
return lenBuf == int(wordLen), g.dataP
}
var bufPos int
// In the first pass, we only check patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
if lenBuf < bufPos+len(pattern) || !bytes.Equal(buf[bufPos:bufPos+len(pattern)], pattern) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP, g.dataBit = savePos, 0
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
if lenBuf < bufPos || !bytes.Equal(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
if lenBuf < int(wordLen) || !bytes.Equal(buf[lastUncovered:wordLen], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
postLoopPos += dif
}
if lenBuf != int(wordLen) {
g.dataP, g.dataBit = savePos, 0
return false, savePos
}
g.dataP, g.dataBit = postLoopPos, 0
return true, postLoopPos
}
// MatchPrefix only checks if the word at the current offset has a buf prefix. Does not move offset to the next word.
func (g *Getter) MatchPrefix(prefix []byte) bool {
savePos := g.dataP
defer func() {
g.dataP, g.dataBit = savePos, 0
}()
wordLen := g.nextPos(true /* clean */)
wordLen-- // because when create huffman tree we do ++ , because 0 is terminator
prefixLen := len(prefix)
if wordLen == 0 || int(wordLen) < prefixLen {
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
if prefixLen != 0 {
g.dataP, g.dataBit = savePos, 0
}
return prefixLen == int(wordLen)
}
var bufPos int
// In the first pass, we only check patterns
// Only run this loop as far as the prefix goes, there is no need to check further
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
var comparisonLen int
if prefixLen < bufPos+len(pattern) {
comparisonLen = prefixLen - bufPos
} else {
comparisonLen = len(pattern)
}
if bufPos < prefixLen {
if !bytes.Equal(prefix[bufPos:bufPos+comparisonLen], pattern[:comparisonLen]) {
return false
}
}
}
if g.dataBit > 0 {
g.dataP++
g.dataBit = 0
}
postLoopPos := g.dataP
g.dataP, g.dataBit = savePos, 0
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0 && lastUncovered < prefixLen; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
var comparisonLen int
if prefixLen < lastUncovered+int(dif) {
comparisonLen = prefixLen - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if prefixLen > lastUncovered && int(wordLen) > lastUncovered {
dif := wordLen - uint64(lastUncovered)
var comparisonLen int
if prefixLen < int(wordLen) {
comparisonLen = prefixLen - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(prefix[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
}
return true
}