erigon-pulse/crypto/crypto.go
Péter Szilágyi 08eea0f0e4 accounts, core, crypto, internal: use normalised V during signature handling (#3455)
To address increasing complexity in code that handles signatures, this PR
discards all notion of "different" signature types at the library level. Both
the crypto and accounts package is reduced to only be able to produce plain
canonical secp256k1 signatures. This makes the crpyto APIs much cleaner,
simpler and harder to abuse.
2017-01-05 11:35:23 +01:00

233 lines
6.5 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"fmt"
"io"
"io/ioutil"
"math/big"
"os"
"encoding/hex"
"errors"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/ripemd160"
)
func Keccak256(data ...[]byte) []byte {
d := sha3.NewKeccak256()
for _, b := range data {
d.Write(b)
}
return d.Sum(nil)
}
func Keccak256Hash(data ...[]byte) (h common.Hash) {
d := sha3.NewKeccak256()
for _, b := range data {
d.Write(b)
}
d.Sum(h[:0])
return h
}
// Deprecated: For backward compatibility as other packages depend on these
func Sha3(data ...[]byte) []byte { return Keccak256(data...) }
func Sha3Hash(data ...[]byte) common.Hash { return Keccak256Hash(data...) }
// Creates an ethereum address given the bytes and the nonce
func CreateAddress(b common.Address, nonce uint64) common.Address {
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
return common.BytesToAddress(Keccak256(data)[12:])
}
func Sha256(data []byte) []byte {
hash := sha256.Sum256(data)
return hash[:]
}
func Ripemd160(data []byte) []byte {
ripemd := ripemd160.New()
ripemd.Write(data)
return ripemd.Sum(nil)
}
// Ecrecover returns the public key for the private key that was used to
// calculate the signature.
//
// Note: secp256k1 expects the recover id to be either 0, 1. Ethereum
// signatures have a recover id with an offset of 27. Callers must take
// this into account and if "recovering" from an Ethereum signature adjust.
func Ecrecover(hash, sig []byte) ([]byte, error) {
return secp256k1.RecoverPubkey(hash, sig)
}
// New methods using proper ecdsa keys from the stdlib
func ToECDSA(prv []byte) *ecdsa.PrivateKey {
if len(prv) == 0 {
return nil
}
priv := new(ecdsa.PrivateKey)
priv.PublicKey.Curve = secp256k1.S256()
priv.D = common.BigD(prv)
priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(prv)
return priv
}
func FromECDSA(prv *ecdsa.PrivateKey) []byte {
if prv == nil {
return nil
}
return prv.D.Bytes()
}
func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
if len(pub) == 0 {
return nil
}
x, y := elliptic.Unmarshal(secp256k1.S256(), pub)
return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}
}
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
if pub == nil || pub.X == nil || pub.Y == nil {
return nil
}
return elliptic.Marshal(secp256k1.S256(), pub.X, pub.Y)
}
// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
b, err := hex.DecodeString(hexkey)
if err != nil {
return nil, errors.New("invalid hex string")
}
if len(b) != 32 {
return nil, errors.New("invalid length, need 256 bits")
}
return ToECDSA(b), nil
}
// LoadECDSA loads a secp256k1 private key from the given file.
// The key data is expected to be hex-encoded.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
buf := make([]byte, 64)
fd, err := os.Open(file)
if err != nil {
return nil, err
}
defer fd.Close()
if _, err := io.ReadFull(fd, buf); err != nil {
return nil, err
}
key, err := hex.DecodeString(string(buf))
if err != nil {
return nil, err
}
return ToECDSA(key), nil
}
// SaveECDSA saves a secp256k1 private key to the given file with
// restrictive permissions. The key data is saved hex-encoded.
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
k := hex.EncodeToString(FromECDSA(key))
return ioutil.WriteFile(file, []byte(k), 0600)
}
func GenerateKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(secp256k1.S256(), rand.Reader)
}
// ValidateSignatureValues verifies whether the signature values are valid with
// the given chain rules. The v value is assumed to be either 0 or 1.
func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
return false
}
// reject upper range of s values (ECDSA malleability)
// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
if homestead && s.Cmp(secp256k1.HalfN) > 0 {
return false
}
// Frontier: allow s to be in full N range
return r.Cmp(secp256k1.N) < 0 && s.Cmp(secp256k1.N) < 0 && (v == 0 || v == 1)
}
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
s, err := Ecrecover(hash, sig)
if err != nil {
return nil, err
}
x, y := elliptic.Unmarshal(secp256k1.S256(), s)
return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}, nil
}
// Sign calculates an ECDSA signature.
//
// This function is susceptible to choosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given hash cannot be choosen by an adversery. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
if len(data) != 32 {
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(data))
}
seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
defer zeroBytes(seckey)
sig, err = secp256k1.Sign(data, seckey)
return
}
func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
}
func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
key := ecies.ImportECDSA(prv)
return key.Decrypt(rand.Reader, ct, nil, nil)
}
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
pubBytes := FromECDSAPub(&p)
return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
}
func zeroBytes(bytes []byte) {
for i := range bytes {
bytes[i] = 0
}
}