erigon-pulse/signer/core/signed_data.go
Martin Holst Swende 5f94f8c7e7 signer: change the stdio jsonrpc to use legacy namespace conventions (#19047)
This PR will will break existing UIs, since it changes all calls like ApproveSignTransaction to be on the form ui_approveSignTransaction.

This is to make it possible for the UI to reuse the json-rpc library from go-ethereum, which uses this convention.

Also, this PR removes some unused structs, after import/export were removed from the external api (so no longer needs internal methods for approval)

One more breaking change is introduced, removing passwords from the ApproveSignTxResponse and the likes. This makes the manual interface more like the rulebased interface, and integrates nicely with the credential storage. Thus, the way it worked before, it would be tempting for the UI to implement 'remember password' functionality. The way it is now, it will be easy instead to tell clef to store passwords and use them.

If a pw is not found in the credential store, the user is prompted to provide the password.
2019-03-07 11:56:08 +02:00

918 lines
28 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
//
package core
import (
"bytes"
"context"
"errors"
"fmt"
"math/big"
"mime"
"regexp"
"sort"
"strconv"
"strings"
"unicode"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/accounts/abi"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus/clique"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
)
type SigFormat struct {
Mime string
ByteVersion byte
}
var (
TextValidator = SigFormat{
accounts.MimetypeTextWithValidator,
0x00,
}
DataTyped = SigFormat{
accounts.MimetypeTypedData,
0x01,
}
ApplicationClique = SigFormat{
accounts.MimetypeClique,
0x02,
}
TextPlain = SigFormat{
accounts.MimetypeTextPlain,
0x45,
}
)
type ValidatorData struct {
Address common.Address
Message hexutil.Bytes
}
type TypedData struct {
Types Types `json:"types"`
PrimaryType string `json:"primaryType"`
Domain TypedDataDomain `json:"domain"`
Message TypedDataMessage `json:"message"`
}
type Type struct {
Name string `json:"name"`
Type string `json:"type"`
}
func (t *Type) isArray() bool {
return strings.HasSuffix(t.Type, "[]")
}
// typeName returns the canonical name of the type. If the type is 'Person[]', then
// this method returns 'Person'
func (t *Type) typeName() string {
if strings.HasSuffix(t.Type, "[]") {
return strings.TrimSuffix(t.Type, "[]")
}
return t.Type
}
func (t *Type) isReferenceType() bool {
// Reference types must have a leading uppercase characer
return unicode.IsUpper([]rune(t.Type)[0])
}
type Types map[string][]Type
type TypePriority struct {
Type string
Value uint
}
type TypedDataMessage = map[string]interface{}
type TypedDataDomain struct {
Name string `json:"name"`
Version string `json:"version"`
ChainId *big.Int `json:"chainId"`
VerifyingContract string `json:"verifyingContract"`
Salt string `json:"salt"`
}
var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
// sign receives a request and produces a signature
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
func (api *SignerAPI) sign(addr common.MixedcaseAddress, req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
// We make the request prior to looking up if we actually have the account, to prevent
// account-enumeration via the API
res, err := api.UI.ApproveSignData(req)
if err != nil {
return nil, err
}
if !res.Approved {
return nil, ErrRequestDenied
}
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr.Address()}
wallet, err := api.am.Find(account)
if err != nil {
return nil, err
}
pw, err := api.lookupOrQueryPassword(account.Address,
"Password for signing",
fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
if err != nil {
return nil, err
}
// Sign the data with the wallet
signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
if err != nil {
return nil, err
}
if legacyV {
signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
}
return signature, nil
}
// SignData signs the hash of the provided data, but does so differently
// depending on the content-type specified.
//
// Different types of validation occur.
func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
if err != nil {
return nil, err
}
signature, err := api.sign(addr, req, transformV)
if err != nil {
api.UI.ShowError(err.Error())
return nil, err
}
return signature, nil
}
// determineSignatureFormat determines which signature method should be used based upon the mime type
// In the cases where it matters ensure that the charset is handled. The charset
// resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
// charset, ok := params["charset"]
// As it is now, we accept any charset and just treat it as 'raw'.
// This method returns the mimetype for signing along with the request
func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
var (
req *SignDataRequest
useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
)
mediaType, _, err := mime.ParseMediaType(contentType)
if err != nil {
return nil, useEthereumV, err
}
switch mediaType {
case TextValidator.Mime:
// Data with an intended validator
validatorData, err := UnmarshalValidatorData(data)
if err != nil {
return nil, useEthereumV, err
}
sighash, msg := SignTextValidator(validatorData)
message := []*NameValueType{
{
Name: "message",
Typ: "text",
Value: msg,
},
}
req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Message: message, Hash: sighash}
case ApplicationClique.Mime:
// Clique is the Ethereum PoA standard
stringData, ok := data.(string)
if !ok {
return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
}
cliqueData, err := hexutil.Decode(stringData)
if err != nil {
return nil, useEthereumV, err
}
header := &types.Header{}
if err := rlp.DecodeBytes(cliqueData, header); err != nil {
return nil, useEthereumV, err
}
// The incoming clique header is already truncated, sent to us with a extradata already shortened
if len(header.Extra) < 65 {
// Need to add it back, to get a suitable length for hashing
newExtra := make([]byte, len(header.Extra)+65)
copy(newExtra, header.Extra)
header.Extra = newExtra
}
// Get back the rlp data, encoded by us
sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
if err != nil {
return nil, useEthereumV, err
}
message := []*NameValueType{
{
Name: "Clique header",
Typ: "clique",
Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
},
}
// Clique uses V on the form 0 or 1
useEthereumV = false
req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Message: message, Hash: sighash}
default: // also case TextPlain.Mime:
// Calculates an Ethereum ECDSA signature for:
// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
// We expect it to be a string
if stringData, ok := data.(string); !ok {
return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
} else {
if textData, err := hexutil.Decode(stringData); err != nil {
return nil, useEthereumV, err
} else {
sighash, msg := accounts.TextAndHash(textData)
message := []*NameValueType{
{
Name: "message",
Typ: accounts.MimetypeTextPlain,
Value: msg,
},
}
req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Message: message, Hash: sighash}
}
}
}
req.Address = addr
req.Meta = MetadataFromContext(ctx)
return req, useEthereumV, nil
}
// SignTextWithValidator signs the given message which can be further recovered
// with the given validator.
// hash = keccak256("\x19\x00"${address}${data}).
func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
fmt.Printf("SignTextValidator:%s\n", msg)
return crypto.Keccak256([]byte(msg)), msg
}
// cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
// signing. It is the hash of the entire header apart from the 65 byte signature
// contained at the end of the extra data.
//
// The method requires the extra data to be at least 65 bytes -- the original implementation
// in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
// and simply return an error instead
func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
if len(header.Extra) < 65 {
err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
return
}
rlp = clique.CliqueRLP(header)
hash = clique.SealHash(header).Bytes()
return hash, rlp, err
}
// SignTypedData signs EIP-712 conformant typed data
// hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
if err != nil {
return nil, err
}
typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
if err != nil {
return nil, err
}
rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
sighash := crypto.Keccak256(rawData)
message := typedData.Format()
req := &SignDataRequest{ContentType: DataTyped.Mime, Rawdata: rawData, Message: message, Hash: sighash}
signature, err := api.sign(addr, req, true)
if err != nil {
api.UI.ShowError(err.Error())
return nil, err
}
return signature, nil
}
// HashStruct generates a keccak256 hash of the encoding of the provided data
func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
encodedData, err := typedData.EncodeData(primaryType, data, 1)
if err != nil {
return nil, err
}
return crypto.Keccak256(encodedData), nil
}
// Dependencies returns an array of custom types ordered by their hierarchical reference tree
func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
includes := func(arr []string, str string) bool {
for _, obj := range arr {
if obj == str {
return true
}
}
return false
}
if includes(found, primaryType) {
return found
}
if typedData.Types[primaryType] == nil {
return found
}
found = append(found, primaryType)
for _, field := range typedData.Types[primaryType] {
for _, dep := range typedData.Dependencies(field.Type, found) {
if !includes(found, dep) {
found = append(found, dep)
}
}
}
return found
}
// EncodeType generates the following encoding:
// `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
//
// each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
// Get dependencies primary first, then alphabetical
deps := typedData.Dependencies(primaryType, []string{})
slicedDeps := deps[1:]
sort.Strings(slicedDeps)
deps = append([]string{primaryType}, slicedDeps...)
// Format as a string with fields
var buffer bytes.Buffer
for _, dep := range deps {
buffer.WriteString(dep)
buffer.WriteString("(")
for _, obj := range typedData.Types[dep] {
buffer.WriteString(obj.Type)
buffer.WriteString(" ")
buffer.WriteString(obj.Name)
buffer.WriteString(",")
}
buffer.Truncate(buffer.Len() - 1)
buffer.WriteString(")")
}
return buffer.Bytes()
}
// TypeHash creates the keccak256 hash of the data
func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
return crypto.Keccak256(typedData.EncodeType(primaryType))
}
// EncodeData generates the following encoding:
// `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
//
// each encoded member is 32-byte long
func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
if err := typedData.validate(); err != nil {
return nil, err
}
buffer := bytes.Buffer{}
// Verify extra data
if len(typedData.Types[primaryType]) < len(data) {
return nil, errors.New("there is extra data provided in the message")
}
// Add typehash
buffer.Write(typedData.TypeHash(primaryType))
// Add field contents. Structs and arrays have special handlers.
for _, field := range typedData.Types[primaryType] {
encType := field.Type
encValue := data[field.Name]
if encType[len(encType)-1:] == "]" {
arrayValue, ok := encValue.([]interface{})
if !ok {
return nil, dataMismatchError(encType, encValue)
}
arrayBuffer := bytes.Buffer{}
parsedType := strings.Split(encType, "[")[0]
for _, item := range arrayValue {
if typedData.Types[parsedType] != nil {
mapValue, ok := item.(map[string]interface{})
if !ok {
return nil, dataMismatchError(parsedType, item)
}
encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
if err != nil {
return nil, err
}
arrayBuffer.Write(encodedData)
} else {
bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
if err != nil {
return nil, err
}
arrayBuffer.Write(bytesValue)
}
}
buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
} else if typedData.Types[field.Type] != nil {
mapValue, ok := encValue.(map[string]interface{})
if !ok {
return nil, dataMismatchError(encType, encValue)
}
encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
if err != nil {
return nil, err
}
buffer.Write(crypto.Keccak256(encodedData))
} else {
byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
if err != nil {
return nil, err
}
buffer.Write(byteValue)
}
}
return buffer.Bytes(), nil
}
// EncodePrimitiveValue deals with the primitive values found
// while searching through the typed data
func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
switch encType {
case "address":
stringValue, ok := encValue.(string)
if !ok || !common.IsHexAddress(stringValue) {
return nil, dataMismatchError(encType, encValue)
}
retval := make([]byte, 32)
copy(retval[12:], common.HexToAddress(stringValue).Bytes())
return retval, nil
case "bool":
boolValue, ok := encValue.(bool)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
if boolValue {
return math.PaddedBigBytes(common.Big1, 32), nil
}
return math.PaddedBigBytes(common.Big0, 32), nil
case "string":
strVal, ok := encValue.(string)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
return crypto.Keccak256([]byte(strVal)), nil
case "bytes":
bytesValue, ok := encValue.([]byte)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
return crypto.Keccak256(bytesValue), nil
}
if strings.HasPrefix(encType, "bytes") {
lengthStr := strings.TrimPrefix(encType, "bytes")
length, err := strconv.Atoi(lengthStr)
if err != nil {
return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
}
if length < 0 || length > 32 {
return nil, fmt.Errorf("invalid size on bytes: %d", length)
}
if byteValue, ok := encValue.(hexutil.Bytes); !ok {
return nil, dataMismatchError(encType, encValue)
} else {
return math.PaddedBigBytes(new(big.Int).SetBytes(byteValue), 32), nil
}
}
if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
length := 0
if encType == "int" || encType == "uint" {
length = 256
} else {
lengthStr := ""
if strings.HasPrefix(encType, "uint") {
lengthStr = strings.TrimPrefix(encType, "uint")
} else {
lengthStr = strings.TrimPrefix(encType, "int")
}
atoiSize, err := strconv.Atoi(lengthStr)
if err != nil {
return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
}
length = atoiSize
}
bigIntValue, ok := encValue.(*big.Int)
if bigIntValue.BitLen() > length {
return nil, fmt.Errorf("integer larger than '%v'", encType)
}
if !ok {
return nil, dataMismatchError(encType, encValue)
}
return abi.U256(bigIntValue), nil
}
return nil, fmt.Errorf("unrecognized type '%s'", encType)
}
// dataMismatchError generates an error for a mismatch between
// the provided type and data
func dataMismatchError(encType string, encValue interface{}) error {
return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
}
// EcRecover recovers the address associated with the given sig.
// Only compatible with `text/plain`
func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
// Returns the address for the Account that was used to create the signature.
//
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
// addr = ecrecover(hash, signature)
//
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
// the V value must be be 27 or 28 for legacy reasons.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
if len(sig) != 65 {
return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
}
if sig[64] != 27 && sig[64] != 28 {
return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
}
sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
hash := accounts.TextHash(data)
rpk, err := crypto.SigToPub(hash, sig)
if err != nil {
return common.Address{}, err
}
return crypto.PubkeyToAddress(*rpk), nil
}
// UnmarshalValidatorData converts the bytes input to typed data
func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
raw, ok := data.(map[string]interface{})
if !ok {
return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
}
addr, ok := raw["address"].(string)
if !ok {
return ValidatorData{}, errors.New("validator address is not sent as a string")
}
addrBytes, err := hexutil.Decode(addr)
if err != nil {
return ValidatorData{}, err
}
if !ok || len(addrBytes) == 0 {
return ValidatorData{}, errors.New("validator address is undefined")
}
message, ok := raw["message"].(string)
if !ok {
return ValidatorData{}, errors.New("message is not sent as a string")
}
messageBytes, err := hexutil.Decode(message)
if err != nil {
return ValidatorData{}, err
}
if !ok || len(messageBytes) == 0 {
return ValidatorData{}, errors.New("message is undefined")
}
return ValidatorData{
Address: common.BytesToAddress(addrBytes),
Message: messageBytes,
}, nil
}
// validate makes sure the types are sound
func (typedData *TypedData) validate() error {
if err := typedData.Types.validate(); err != nil {
return err
}
if err := typedData.Domain.validate(); err != nil {
return err
}
return nil
}
// Map generates a map version of the typed data
func (typedData *TypedData) Map() map[string]interface{} {
dataMap := map[string]interface{}{
"types": typedData.Types,
"domain": typedData.Domain.Map(),
"primaryType": typedData.PrimaryType,
"message": typedData.Message,
}
return dataMap
}
// PrettyPrint generates a nice output to help the users
// of clef present data in their apps
func (typedData *TypedData) PrettyPrint() string {
output := bytes.Buffer{}
formatted := typedData.Format()
for _, item := range formatted {
output.WriteString(fmt.Sprintf("%v\n", item.Pprint(0)))
}
return output.String()
}
// Format returns a representation of typedData, which can be easily displayed by a user-interface
// without in-depth knowledge about 712 rules
func (typedData *TypedData) Format() []*NameValueType {
var nvts []*NameValueType
nvts = append(nvts, &NameValueType{
Name: "EIP712Domain",
Value: typedData.formatData("EIP712Domain", typedData.Domain.Map()),
Typ: "domain",
})
nvts = append(nvts, &NameValueType{
Name: typedData.PrimaryType,
Value: typedData.formatData(typedData.PrimaryType, typedData.Message),
Typ: "primary type",
})
return nvts
}
func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) []*NameValueType {
var output []*NameValueType
// Add field contents. Structs and arrays have special handlers.
for _, field := range typedData.Types[primaryType] {
encName := field.Name
encValue := data[encName]
item := &NameValueType{
Name: encName,
Typ: field.Type,
}
if field.isArray() {
arrayValue, _ := encValue.([]interface{})
parsedType := field.typeName()
for _, v := range arrayValue {
if typedData.Types[parsedType] != nil {
mapValue, _ := v.(map[string]interface{})
mapOutput := typedData.formatData(parsedType, mapValue)
item.Value = mapOutput
} else {
primitiveOutput := formatPrimitiveValue(field.Type, encValue)
item.Value = primitiveOutput
}
}
} else if typedData.Types[field.Type] != nil {
mapValue, _ := encValue.(map[string]interface{})
mapOutput := typedData.formatData(field.Type, mapValue)
item.Value = mapOutput
} else {
primitiveOutput := formatPrimitiveValue(field.Type, encValue)
item.Value = primitiveOutput
}
output = append(output, item)
}
return output
}
func formatPrimitiveValue(encType string, encValue interface{}) string {
switch encType {
case "address":
stringValue, _ := encValue.(string)
return common.HexToAddress(stringValue).String()
case "bool":
boolValue, _ := encValue.(bool)
return fmt.Sprintf("%t", boolValue)
case "bytes", "string":
return fmt.Sprintf("%s", encValue)
}
if strings.HasPrefix(encType, "bytes") {
return fmt.Sprintf("%s", encValue)
} else if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
bigIntValue, _ := encValue.(*big.Int)
return fmt.Sprintf("%d (0x%x)", bigIntValue, bigIntValue)
}
return "NA"
}
// NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
// json structures used to communicate signing-info about typed data with the UI
type NameValueType struct {
Name string `json:"name"`
Value interface{} `json:"value"`
Typ string `json:"type"`
}
// Pprint returns a pretty-printed version of nvt
func (nvt *NameValueType) Pprint(depth int) string {
output := bytes.Buffer{}
output.WriteString(strings.Repeat("\u00a0", depth*2))
output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
if nvts, ok := nvt.Value.([]*NameValueType); ok {
output.WriteString("\n")
for _, next := range nvts {
sublevel := next.Pprint(depth + 1)
output.WriteString(sublevel)
}
} else {
output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
}
return output.String()
}
// Validate checks if the types object is conformant to the specs
func (t Types) validate() error {
for typeKey, typeArr := range t {
for _, typeObj := range typeArr {
if typeKey == typeObj.Type {
return fmt.Errorf("type '%s' cannot reference itself", typeObj.Type)
}
if typeObj.isReferenceType() {
if _, exist := t[typeObj.Type]; !exist {
return fmt.Errorf("reference type '%s' is undefined", typeObj.Type)
}
if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
return fmt.Errorf("unknown reference type '%s", typeObj.Type)
}
} else if !isPrimitiveTypeValid(typeObj.Type) {
return fmt.Errorf("unknown type '%s'", typeObj.Type)
}
}
}
return nil
}
// Checks if the primitive value is valid
func isPrimitiveTypeValid(primitiveType string) bool {
if primitiveType == "address" ||
primitiveType == "address[]" ||
primitiveType == "bool" ||
primitiveType == "bool[]" ||
primitiveType == "string" ||
primitiveType == "string[]" {
return true
}
if primitiveType == "bytes" ||
primitiveType == "bytes[]" ||
primitiveType == "bytes1" ||
primitiveType == "bytes1[]" ||
primitiveType == "bytes2" ||
primitiveType == "bytes2[]" ||
primitiveType == "bytes3" ||
primitiveType == "bytes3[]" ||
primitiveType == "bytes4" ||
primitiveType == "bytes4[]" ||
primitiveType == "bytes5" ||
primitiveType == "bytes5[]" ||
primitiveType == "bytes6" ||
primitiveType == "bytes6[]" ||
primitiveType == "bytes7" ||
primitiveType == "bytes7[]" ||
primitiveType == "bytes8" ||
primitiveType == "bytes8[]" ||
primitiveType == "bytes9" ||
primitiveType == "bytes9[]" ||
primitiveType == "bytes10" ||
primitiveType == "bytes10[]" ||
primitiveType == "bytes11" ||
primitiveType == "bytes11[]" ||
primitiveType == "bytes12" ||
primitiveType == "bytes12[]" ||
primitiveType == "bytes13" ||
primitiveType == "bytes13[]" ||
primitiveType == "bytes14" ||
primitiveType == "bytes14[]" ||
primitiveType == "bytes15" ||
primitiveType == "bytes15[]" ||
primitiveType == "bytes16" ||
primitiveType == "bytes16[]" ||
primitiveType == "bytes17" ||
primitiveType == "bytes17[]" ||
primitiveType == "bytes18" ||
primitiveType == "bytes18[]" ||
primitiveType == "bytes19" ||
primitiveType == "bytes19[]" ||
primitiveType == "bytes20" ||
primitiveType == "bytes20[]" ||
primitiveType == "bytes21" ||
primitiveType == "bytes21[]" ||
primitiveType == "bytes22" ||
primitiveType == "bytes22[]" ||
primitiveType == "bytes23" ||
primitiveType == "bytes23[]" ||
primitiveType == "bytes24" ||
primitiveType == "bytes24[]" ||
primitiveType == "bytes25" ||
primitiveType == "bytes25[]" ||
primitiveType == "bytes26" ||
primitiveType == "bytes26[]" ||
primitiveType == "bytes27" ||
primitiveType == "bytes27[]" ||
primitiveType == "bytes28" ||
primitiveType == "bytes28[]" ||
primitiveType == "bytes29" ||
primitiveType == "bytes29[]" ||
primitiveType == "bytes30" ||
primitiveType == "bytes30[]" ||
primitiveType == "bytes31" ||
primitiveType == "bytes31[]" {
return true
}
if primitiveType == "int" ||
primitiveType == "int[]" ||
primitiveType == "int8" ||
primitiveType == "int8[]" ||
primitiveType == "int16" ||
primitiveType == "int16[]" ||
primitiveType == "int32" ||
primitiveType == "int32[]" ||
primitiveType == "int64" ||
primitiveType == "int64[]" ||
primitiveType == "int128" ||
primitiveType == "int128[]" ||
primitiveType == "int256" ||
primitiveType == "int256[]" {
return true
}
if primitiveType == "uint" ||
primitiveType == "uint[]" ||
primitiveType == "uint8" ||
primitiveType == "uint8[]" ||
primitiveType == "uint16" ||
primitiveType == "uint16[]" ||
primitiveType == "uint32" ||
primitiveType == "uint32[]" ||
primitiveType == "uint64" ||
primitiveType == "uint64[]" ||
primitiveType == "uint128" ||
primitiveType == "uint128[]" ||
primitiveType == "uint256" ||
primitiveType == "uint256[]" {
return true
}
return false
}
// validate checks if the given domain is valid, i.e. contains at least
// the minimum viable keys and values
func (domain *TypedDataDomain) validate() error {
if domain.ChainId == big.NewInt(0) {
return errors.New("chainId must be specified according to EIP-155")
}
if len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
return errors.New("domain is undefined")
}
return nil
}
// Map is a helper function to generate a map version of the domain
func (domain *TypedDataDomain) Map() map[string]interface{} {
dataMap := map[string]interface{}{
"chainId": domain.ChainId,
}
if len(domain.Name) > 0 {
dataMap["name"] = domain.Name
}
if len(domain.Version) > 0 {
dataMap["version"] = domain.Version
}
if len(domain.VerifyingContract) > 0 {
dataMap["verifyingContract"] = domain.VerifyingContract
}
if len(domain.Salt) > 0 {
dataMap["salt"] = domain.Salt
}
return dataMap
}