mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-25 13:07:17 +00:00
612 lines
17 KiB
Go
612 lines
17 KiB
Go
package p2p
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"net"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
"github.com/ethereum/go-ethereum/crypto/sha3"
|
|
"github.com/ethereum/go-ethereum/p2p/discover"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
)
|
|
|
|
const (
|
|
maxUint24 = ^uint32(0) >> 8
|
|
|
|
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
|
|
sigLen = 65 // elliptic S256
|
|
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
|
|
shaLen = 32 // hash length (for nonce etc)
|
|
|
|
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
|
|
authRespLen = pubLen + shaLen + 1
|
|
|
|
eciesBytes = 65 + 16 + 32
|
|
encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
|
|
encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
|
|
|
|
// total timeout for encryption handshake and protocol
|
|
// handshake in both directions.
|
|
handshakeTimeout = 5 * time.Second
|
|
|
|
// This is the timeout for sending the disconnect reason.
|
|
// This is shorter than the usual timeout because we don't want
|
|
// to wait if the connection is known to be bad anyway.
|
|
discWriteTimeout = 1 * time.Second
|
|
)
|
|
|
|
// rlpx is the transport protocol used by actual (non-test) connections.
|
|
// It wraps the frame encoder with locks and read/write deadlines.
|
|
type rlpx struct {
|
|
fd net.Conn
|
|
|
|
rmu, wmu sync.Mutex
|
|
rw *rlpxFrameRW
|
|
}
|
|
|
|
func newRLPX(fd net.Conn) transport {
|
|
fd.SetDeadline(time.Now().Add(handshakeTimeout))
|
|
return &rlpx{fd: fd}
|
|
}
|
|
|
|
func (t *rlpx) ReadMsg() (Msg, error) {
|
|
t.rmu.Lock()
|
|
defer t.rmu.Unlock()
|
|
t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
|
|
return t.rw.ReadMsg()
|
|
}
|
|
|
|
func (t *rlpx) WriteMsg(msg Msg) error {
|
|
t.wmu.Lock()
|
|
defer t.wmu.Unlock()
|
|
t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
|
|
return t.rw.WriteMsg(msg)
|
|
}
|
|
|
|
func (t *rlpx) close(err error) {
|
|
t.wmu.Lock()
|
|
defer t.wmu.Unlock()
|
|
// Tell the remote end why we're disconnecting if possible.
|
|
if t.rw != nil {
|
|
if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
|
|
t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout))
|
|
SendItems(t.rw, discMsg, r)
|
|
}
|
|
}
|
|
t.fd.Close()
|
|
}
|
|
|
|
// doEncHandshake runs the protocol handshake using authenticated
|
|
// messages. the protocol handshake is the first authenticated message
|
|
// and also verifies whether the encryption handshake 'worked' and the
|
|
// remote side actually provided the right public key.
|
|
func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
|
|
// Writing our handshake happens concurrently, we prefer
|
|
// returning the handshake read error. If the remote side
|
|
// disconnects us early with a valid reason, we should return it
|
|
// as the error so it can be tracked elsewhere.
|
|
werr := make(chan error, 1)
|
|
go func() { werr <- Send(t.rw, handshakeMsg, our) }()
|
|
if their, err = readProtocolHandshake(t.rw, our); err != nil {
|
|
<-werr // make sure the write terminates too
|
|
return nil, err
|
|
}
|
|
if err := <-werr; err != nil {
|
|
return nil, fmt.Errorf("write error: %v", err)
|
|
}
|
|
return their, nil
|
|
}
|
|
|
|
func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
|
|
msg, err := rw.ReadMsg()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if msg.Size > baseProtocolMaxMsgSize {
|
|
return nil, fmt.Errorf("message too big")
|
|
}
|
|
if msg.Code == discMsg {
|
|
// Disconnect before protocol handshake is valid according to the
|
|
// spec and we send it ourself if the posthanshake checks fail.
|
|
// We can't return the reason directly, though, because it is echoed
|
|
// back otherwise. Wrap it in a string instead.
|
|
var reason [1]DiscReason
|
|
rlp.Decode(msg.Payload, &reason)
|
|
return nil, reason[0]
|
|
}
|
|
if msg.Code != handshakeMsg {
|
|
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
|
|
}
|
|
var hs protoHandshake
|
|
if err := msg.Decode(&hs); err != nil {
|
|
return nil, err
|
|
}
|
|
// validate handshake info
|
|
if hs.Version != our.Version {
|
|
return nil, DiscIncompatibleVersion
|
|
}
|
|
if (hs.ID == discover.NodeID{}) {
|
|
return nil, DiscInvalidIdentity
|
|
}
|
|
return &hs, nil
|
|
}
|
|
|
|
func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
|
|
var (
|
|
sec secrets
|
|
err error
|
|
)
|
|
if dial == nil {
|
|
sec, err = receiverEncHandshake(t.fd, prv, nil)
|
|
} else {
|
|
sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
|
|
}
|
|
if err != nil {
|
|
return discover.NodeID{}, err
|
|
}
|
|
t.wmu.Lock()
|
|
t.rw = newRLPXFrameRW(t.fd, sec)
|
|
t.wmu.Unlock()
|
|
return sec.RemoteID, nil
|
|
}
|
|
|
|
// encHandshake contains the state of the encryption handshake.
|
|
type encHandshake struct {
|
|
initiator bool
|
|
remoteID discover.NodeID
|
|
|
|
remotePub *ecies.PublicKey // remote-pubk
|
|
initNonce, respNonce []byte // nonce
|
|
randomPrivKey *ecies.PrivateKey // ecdhe-random
|
|
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
|
|
}
|
|
|
|
// secrets represents the connection secrets
|
|
// which are negotiated during the encryption handshake.
|
|
type secrets struct {
|
|
RemoteID discover.NodeID
|
|
AES, MAC []byte
|
|
EgressMAC, IngressMAC hash.Hash
|
|
Token []byte
|
|
}
|
|
|
|
// secrets is called after the handshake is completed.
|
|
// It extracts the connection secrets from the handshake values.
|
|
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
|
|
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
|
if err != nil {
|
|
return secrets{}, err
|
|
}
|
|
|
|
// derive base secrets from ephemeral key agreement
|
|
sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
|
|
aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
|
|
s := secrets{
|
|
RemoteID: h.remoteID,
|
|
AES: aesSecret,
|
|
MAC: crypto.Sha3(ecdheSecret, aesSecret),
|
|
Token: crypto.Sha3(sharedSecret),
|
|
}
|
|
|
|
// setup sha3 instances for the MACs
|
|
mac1 := sha3.NewKeccak256()
|
|
mac1.Write(xor(s.MAC, h.respNonce))
|
|
mac1.Write(auth)
|
|
mac2 := sha3.NewKeccak256()
|
|
mac2.Write(xor(s.MAC, h.initNonce))
|
|
mac2.Write(authResp)
|
|
if h.initiator {
|
|
s.EgressMAC, s.IngressMAC = mac1, mac2
|
|
} else {
|
|
s.EgressMAC, s.IngressMAC = mac2, mac1
|
|
}
|
|
|
|
return s, nil
|
|
}
|
|
|
|
func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
|
|
return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
|
|
}
|
|
|
|
// initiatorEncHandshake negotiates a session token on conn.
|
|
// it should be called on the dialing side of the connection.
|
|
//
|
|
// prv is the local client's private key.
|
|
// token is the token from a previous session with this node.
|
|
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
|
|
h, err := newInitiatorHandshake(remoteID)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
auth, err := h.authMsg(prv, token)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
if _, err = conn.Write(auth); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
response := make([]byte, encAuthRespLen)
|
|
if _, err = io.ReadFull(conn, response); err != nil {
|
|
return s, err
|
|
}
|
|
if err := h.decodeAuthResp(response, prv); err != nil {
|
|
return s, err
|
|
}
|
|
return h.secrets(auth, response)
|
|
}
|
|
|
|
func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
|
|
// generate random initiator nonce
|
|
n := make([]byte, shaLen)
|
|
if _, err := rand.Read(n); err != nil {
|
|
return nil, err
|
|
}
|
|
// generate random keypair to use for signing
|
|
randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
rpub, err := remoteID.Pubkey()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("bad remoteID: %v", err)
|
|
}
|
|
h := &encHandshake{
|
|
initiator: true,
|
|
remoteID: remoteID,
|
|
remotePub: ecies.ImportECDSAPublic(rpub),
|
|
initNonce: n,
|
|
randomPrivKey: randpriv,
|
|
}
|
|
return h, nil
|
|
}
|
|
|
|
// authMsg creates an encrypted initiator handshake message.
|
|
func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
|
|
var tokenFlag byte
|
|
if token == nil {
|
|
// no session token found means we need to generate shared secret.
|
|
// ecies shared secret is used as initial session token for new peers
|
|
// generate shared key from prv and remote pubkey
|
|
var err error
|
|
if token, err = h.ecdhShared(prv); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
// for known peers, we use stored token from the previous session
|
|
tokenFlag = 0x01
|
|
}
|
|
|
|
// sign known message:
|
|
// ecdh-shared-secret^nonce for new peers
|
|
// token^nonce for old peers
|
|
signed := xor(token, h.initNonce)
|
|
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// encode auth message
|
|
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
|
|
msg := make([]byte, authMsgLen)
|
|
n := copy(msg, signature)
|
|
n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
|
|
n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
|
n += copy(msg[n:], h.initNonce)
|
|
msg[n] = tokenFlag
|
|
|
|
// encrypt auth message using remote-pubk
|
|
return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
|
|
}
|
|
|
|
// decodeAuthResp decode an encrypted authentication response message.
|
|
func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
|
|
msg, err := crypto.Decrypt(prv, auth)
|
|
if err != nil {
|
|
return fmt.Errorf("could not decrypt auth response (%v)", err)
|
|
}
|
|
h.respNonce = msg[pubLen : pubLen+shaLen]
|
|
h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// ignore token flag for now
|
|
return nil
|
|
}
|
|
|
|
// receiverEncHandshake negotiates a session token on conn.
|
|
// it should be called on the listening side of the connection.
|
|
//
|
|
// prv is the local client's private key.
|
|
// token is the token from a previous session with this node.
|
|
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
|
|
// read remote auth sent by initiator.
|
|
auth := make([]byte, encAuthMsgLen)
|
|
if _, err := io.ReadFull(conn, auth); err != nil {
|
|
return s, err
|
|
}
|
|
h, err := decodeAuthMsg(prv, token, auth)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
|
|
// send auth response
|
|
resp, err := h.authResp(prv, token)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
if _, err = conn.Write(resp); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
return h.secrets(auth, resp)
|
|
}
|
|
|
|
func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
|
|
var err error
|
|
h := new(encHandshake)
|
|
// generate random keypair for session
|
|
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// generate random nonce
|
|
h.respNonce = make([]byte, shaLen)
|
|
if _, err = rand.Read(h.respNonce); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
msg, err := crypto.Decrypt(prv, auth)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
|
|
}
|
|
|
|
// decode message parameters
|
|
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
|
|
h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
|
|
copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
|
|
rpub, err := h.remoteID.Pubkey()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("bad remoteID: %#v", err)
|
|
}
|
|
h.remotePub = ecies.ImportECDSAPublic(rpub)
|
|
|
|
// recover remote random pubkey from signed message.
|
|
if token == nil {
|
|
// TODO: it is an error if the initiator has a token and we don't. check that.
|
|
|
|
// no session token means we need to generate shared secret.
|
|
// ecies shared secret is used as initial session token for new peers.
|
|
// generate shared key from prv and remote pubkey.
|
|
if token, err = h.ecdhShared(prv); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
signedMsg := xor(token, h.initNonce)
|
|
remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
|
|
return h, nil
|
|
}
|
|
|
|
// authResp generates the encrypted authentication response message.
|
|
func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
|
|
// responder auth message
|
|
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
|
|
resp := make([]byte, authRespLen)
|
|
n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
|
|
n += copy(resp[n:], h.respNonce)
|
|
if token == nil {
|
|
resp[n] = 0
|
|
} else {
|
|
resp[n] = 1
|
|
}
|
|
// encrypt using remote-pubk
|
|
return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
|
|
}
|
|
|
|
// importPublicKey unmarshals 512 bit public keys.
|
|
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
|
|
var pubKey65 []byte
|
|
switch len(pubKey) {
|
|
case 64:
|
|
// add 'uncompressed key' flag
|
|
pubKey65 = append([]byte{0x04}, pubKey...)
|
|
case 65:
|
|
pubKey65 = pubKey
|
|
default:
|
|
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
|
|
}
|
|
// TODO: fewer pointless conversions
|
|
return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
|
|
}
|
|
|
|
func exportPubkey(pub *ecies.PublicKey) []byte {
|
|
if pub == nil {
|
|
panic("nil pubkey")
|
|
}
|
|
return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
|
|
}
|
|
|
|
func xor(one, other []byte) (xor []byte) {
|
|
xor = make([]byte, len(one))
|
|
for i := 0; i < len(one); i++ {
|
|
xor[i] = one[i] ^ other[i]
|
|
}
|
|
return xor
|
|
}
|
|
|
|
var (
|
|
// this is used in place of actual frame header data.
|
|
// TODO: replace this when Msg contains the protocol type code.
|
|
zeroHeader = []byte{0xC2, 0x80, 0x80}
|
|
// sixteen zero bytes
|
|
zero16 = make([]byte, 16)
|
|
)
|
|
|
|
// rlpxFrameRW implements a simplified version of RLPx framing.
|
|
// chunked messages are not supported and all headers are equal to
|
|
// zeroHeader.
|
|
//
|
|
// rlpxFrameRW is not safe for concurrent use from multiple goroutines.
|
|
type rlpxFrameRW struct {
|
|
conn io.ReadWriter
|
|
enc cipher.Stream
|
|
dec cipher.Stream
|
|
|
|
macCipher cipher.Block
|
|
egressMAC hash.Hash
|
|
ingressMAC hash.Hash
|
|
}
|
|
|
|
func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
|
|
macc, err := aes.NewCipher(s.MAC)
|
|
if err != nil {
|
|
panic("invalid MAC secret: " + err.Error())
|
|
}
|
|
encc, err := aes.NewCipher(s.AES)
|
|
if err != nil {
|
|
panic("invalid AES secret: " + err.Error())
|
|
}
|
|
// we use an all-zeroes IV for AES because the key used
|
|
// for encryption is ephemeral.
|
|
iv := make([]byte, encc.BlockSize())
|
|
return &rlpxFrameRW{
|
|
conn: conn,
|
|
enc: cipher.NewCTR(encc, iv),
|
|
dec: cipher.NewCTR(encc, iv),
|
|
macCipher: macc,
|
|
egressMAC: s.EgressMAC,
|
|
ingressMAC: s.IngressMAC,
|
|
}
|
|
}
|
|
|
|
func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
|
|
ptype, _ := rlp.EncodeToBytes(msg.Code)
|
|
|
|
// write header
|
|
headbuf := make([]byte, 32)
|
|
fsize := uint32(len(ptype)) + msg.Size
|
|
if fsize > maxUint24 {
|
|
return errors.New("message size overflows uint24")
|
|
}
|
|
putInt24(fsize, headbuf) // TODO: check overflow
|
|
copy(headbuf[3:], zeroHeader)
|
|
rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
|
|
|
|
// write header MAC
|
|
copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
|
|
if _, err := rw.conn.Write(headbuf); err != nil {
|
|
return err
|
|
}
|
|
|
|
// write encrypted frame, updating the egress MAC hash with
|
|
// the data written to conn.
|
|
tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
|
|
if _, err := tee.Write(ptype); err != nil {
|
|
return err
|
|
}
|
|
if _, err := io.Copy(tee, msg.Payload); err != nil {
|
|
return err
|
|
}
|
|
if padding := fsize % 16; padding > 0 {
|
|
if _, err := tee.Write(zero16[:16-padding]); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// write frame MAC. egress MAC hash is up to date because
|
|
// frame content was written to it as well.
|
|
fmacseed := rw.egressMAC.Sum(nil)
|
|
mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
|
|
_, err := rw.conn.Write(mac)
|
|
return err
|
|
}
|
|
|
|
func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
|
|
// read the header
|
|
headbuf := make([]byte, 32)
|
|
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
|
|
return msg, err
|
|
}
|
|
// verify header mac
|
|
shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
|
|
if !hmac.Equal(shouldMAC, headbuf[16:]) {
|
|
return msg, errors.New("bad header MAC")
|
|
}
|
|
rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
|
|
fsize := readInt24(headbuf)
|
|
// ignore protocol type for now
|
|
|
|
// read the frame content
|
|
var rsize = fsize // frame size rounded up to 16 byte boundary
|
|
if padding := fsize % 16; padding > 0 {
|
|
rsize += 16 - padding
|
|
}
|
|
framebuf := make([]byte, rsize)
|
|
if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
|
|
return msg, err
|
|
}
|
|
|
|
// read and validate frame MAC. we can re-use headbuf for that.
|
|
rw.ingressMAC.Write(framebuf)
|
|
fmacseed := rw.ingressMAC.Sum(nil)
|
|
if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
|
|
return msg, err
|
|
}
|
|
shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
|
|
if !hmac.Equal(shouldMAC, headbuf[:16]) {
|
|
return msg, errors.New("bad frame MAC")
|
|
}
|
|
|
|
// decrypt frame content
|
|
rw.dec.XORKeyStream(framebuf, framebuf)
|
|
|
|
// decode message code
|
|
content := bytes.NewReader(framebuf[:fsize])
|
|
if err := rlp.Decode(content, &msg.Code); err != nil {
|
|
return msg, err
|
|
}
|
|
msg.Size = uint32(content.Len())
|
|
msg.Payload = content
|
|
return msg, nil
|
|
}
|
|
|
|
// updateMAC reseeds the given hash with encrypted seed.
|
|
// it returns the first 16 bytes of the hash sum after seeding.
|
|
func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
|
|
aesbuf := make([]byte, aes.BlockSize)
|
|
block.Encrypt(aesbuf, mac.Sum(nil))
|
|
for i := range aesbuf {
|
|
aesbuf[i] ^= seed[i]
|
|
}
|
|
mac.Write(aesbuf)
|
|
return mac.Sum(nil)[:16]
|
|
}
|
|
|
|
func readInt24(b []byte) uint32 {
|
|
return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
|
|
}
|
|
|
|
func putInt24(v uint32, b []byte) {
|
|
b[0] = byte(v >> 16)
|
|
b[1] = byte(v >> 8)
|
|
b[2] = byte(v)
|
|
}
|