erigon-pulse/commitment/bin_patricia_hashed.go
2022-05-20 15:01:44 +07:00

1432 lines
42 KiB
Go

/*
Copyright 2022 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package commitment
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math/bits"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/erigon-lib/common/length"
"github.com/ledgerwatch/erigon-lib/rlp"
)
const (
maxKeySize = 512
keyHalfSize = maxKeySize / 2
maxChild = 2
)
type bitstring []uint8
func hexToBin(hex []byte) bitstring {
bin := make([]byte, 4*len(hex))
for i := range bin {
if hex[i/4]&(1<<(3-i%4)) != 0 {
bin[i] = 1
}
}
return bin
}
// BinHashed implements commitment based on patricia merkle tree with radix 16,
// with keys pre-hashed by keccak256
type BinHashed struct {
root BinCell // Root cell of the tree
// Rows of the grid correspond to the level of depth in the patricia tree
// Columns of the grid correspond to pointers to the nodes further from the root
grid [maxKeySize][maxChild]BinCell // First 64 rows of this grid are for account trie, and next 64 rows are for storage trie
// How many rows (starting from row 0) are currently active and have corresponding selected columns
// Last active row does not have selected column
activeRows int
// Length of the key that reflects current positioning of the grid. It maybe larger than number of active rows,
// if a account leaf cell represents multiple nibbles in the key
currentKeyLen int
currentKey [maxKeySize]byte // For each row indicates which column is currently selected
depths [maxKeySize]int // For each row, the depth of cells in that row
rootChecked bool // Set to false if it is not known whether the root is empty, set to true if it is checked
rootTouched bool
rootPresent bool
branchBefore [maxKeySize]bool // For each row, whether there was a branch node in the database loaded in unfold
touchMap [maxKeySize]uint16 // For each row, bitmap of cells that were either present before modification, or modified or deleted
afterMap [maxKeySize]uint16 // For each row, bitmap of cells that were present after modification
// Function used to load branch node and fill up the cells
// For each cell, it sets the cell type, clears the modified flag, fills the hash,
// and for the extension, account, and leaf type, the `l` and `k`
branchFn func(prefix []byte) ([]byte, error)
// Function used to fetch account with given plain key
accountFn func(plainKey []byte, cell *BinCell) error
// Function used to fetch account with given plain key
storageFn func(plainKey []byte, cell *BinCell) error
keccak keccakState
keccak2 keccakState
accountKeyLen int
trace bool
numBuf [binary.MaxVarintLen64]byte
byteArrayWriter ByteArrayWriter
}
func NewBinPatriciaHashed(accountKeyLen int,
branchFn func(prefix []byte) ([]byte, error),
accountFn func(plainKey []byte, cell *Cell) error,
storageFn func(plainKey []byte, cell *Cell) error,
) *BinHashed {
return &BinHashed{
keccak: sha3.NewLegacyKeccak256().(keccakState),
keccak2: sha3.NewLegacyKeccak256().(keccakState),
accountKeyLen: accountKeyLen,
branchFn: branchFn,
accountFn: wrapAccountStorageFn(accountFn),
storageFn: wrapAccountStorageFn(storageFn),
}
}
func (hph *BinHashed) ProcessUpdates(plainKeys, hashedKeys [][]byte, updates []Update) (map[string][]byte, error) {
branchNodeUpdates := make(map[string][]byte)
for i, hk := range hashedKeys {
hashedKey := hexToBin(hk)
plainKey := plainKeys[i]
update := updates[i]
if hph.trace {
fmt.Printf("plainKey=[%x], hashedKey=[%x], currentKey=[%x], update=%s\n",
plainKey, hashedKey, hph.currentKey[:hph.currentKeyLen], update)
}
// Keep folding until the currentKey is the prefix of the key we modify
for hph.needFolding(hashedKey) {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, fmt.Errorf("fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
// Now unfold until we step on an empty cell
for unfolding := hph.needUnfolding(hashedKey); unfolding > 0; unfolding = hph.needUnfolding(hashedKey) {
if err := hph.unfold(hashedKey, unfolding); err != nil {
return nil, fmt.Errorf("unfold: %w", err)
}
}
// Update the cell
if update.Flags == DELETE_UPDATE {
hph.deleteCell(hashedKey)
} else {
if update.Flags&BALANCE_UPDATE != 0 {
hph.updateBalance(plainKey, hashedKey, &update.Balance)
}
if update.Flags&NONCE_UPDATE != 0 {
hph.updateNonce(plainKey, hashedKey, update.Nonce)
}
if update.Flags&CODE_UPDATE != 0 {
hph.updateCode(plainKey, hashedKey, update.CodeHashOrStorage[:])
}
if update.Flags&STORAGE_UPDATE != 0 {
hph.updateStorage(plainKey, hashedKey, update.CodeHashOrStorage[:update.ValLength])
}
}
}
// Folding everything up to the root
for hph.activeRows > 0 {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, fmt.Errorf("final fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
return branchNodeUpdates, nil
}
func (hph *BinHashed) Variant() TrieVariant {
return VariantBinPatriciaTrie
}
func (hph *BinHashed) RootHash() ([]byte, error) {
hash, err := hph.computeCellHash(&hph.root, 0, nil)
if err != nil {
return nil, err
}
return hash[1:], nil // first byte is 128+hash_len
}
func (hph *BinHashed) SetTrace(trace bool) {
hph.trace = trace
}
// Reset allows BinHashed instance to be reused for the new commitment calculation
func (hph *BinHashed) Reset() {
hph.rootChecked = false
hph.root.hl = 0
hph.root.downHashedLen = 0
hph.root.apl = 0
hph.root.spl = 0
hph.root.extLen = 0
copy(hph.root.CodeHash[:], EmptyCodeHash)
hph.root.StorageLen = 0
hph.root.Balance.Clear()
hph.root.Nonce = 0
hph.rootTouched = false
hph.rootPresent = true
}
func wrapAccountStorageFn(fn func([]byte, *Cell) error) func(pk []byte, bc *BinCell) error {
return func(pk []byte, bc *BinCell) error {
cl := &Cell{}
cl.Balance = *bc.Balance.Clone()
cl.Nonce = bc.Nonce
cl.StorageLen = bc.StorageLen
cl.apl = bc.apl
cl.spl = bc.spl
cl.hl = bc.hl
copy(cl.apk[:], bc.apk[:])
copy(cl.spk[:], bc.spk[:])
copy(cl.h[:], bc.h[:])
copy(cl.extension[:], bc.extension[:])
copy(cl.downHashedKey[:], bc.downHashedKey[:])
copy(cl.CodeHash[:], bc.CodeHash[:])
copy(cl.Storage[:], bc.Storage[:])
if err := fn(pk, cl); err != nil {
return err
}
bc.Balance = *cl.Balance.Clone()
bc.Nonce = cl.Nonce
bc.StorageLen = cl.StorageLen
bc.apl = cl.apl
bc.spl = cl.spl
bc.hl = cl.hl
copy(bc.apk[:], cl.apk[:])
copy(bc.spk[:], cl.spk[:])
copy(bc.h[:], cl.h[:])
copy(bc.extension[:], cl.extension[:])
copy(bc.downHashedKey[:], cl.downHashedKey[:])
copy(bc.CodeHash[:], cl.CodeHash[:])
copy(bc.Storage[:], cl.Storage[:])
return nil
}
}
func (hph *BinHashed) ResetFns(
branchFn func(prefix []byte) ([]byte, error),
accountFn func(plainKey []byte, cell *Cell) error,
storageFn func(plainKey []byte, cell *Cell) error,
) {
hph.branchFn = branchFn
hph.accountFn = wrapAccountStorageFn(accountFn)
hph.storageFn = wrapAccountStorageFn(storageFn)
}
func (hph *BinHashed) completeLeafHash(buf, keyPrefix []byte, kp, kl, compactLen int, key []byte, compact0 byte, ni int, val rlp.RlpSerializable, singleton bool) ([]byte, error) {
totalLen := kp + kl + val.DoubleRLPLen()
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
embedded := !singleton && totalLen+pt < length.Hash
var writer io.Writer
if embedded {
hph.byteArrayWriter.Setup(buf)
writer = &hph.byteArrayWriter
} else {
hph.keccak.Reset()
writer = hph.keccak
}
if _, err := writer.Write(lenPrefix[:pt]); err != nil {
return nil, err
}
if _, err := writer.Write(keyPrefix[:kp]); err != nil {
return nil, err
}
var b [1]byte
b[0] = compact0
if _, err := writer.Write(b[:]); err != nil {
return nil, err
}
for i := 1; i < compactLen; i++ {
b[0] = key[ni]*16 + key[ni+1]
if _, err := writer.Write(b[:]); err != nil {
return nil, err
}
ni += 2
}
var prefixBuf [8]byte
if err := val.ToDoubleRLP(writer, prefixBuf[:]); err != nil {
return nil, err
}
if embedded {
buf = hph.byteArrayWriter.buf
} else {
var hashBuf [33]byte
hashBuf[0] = 0x80 + length.Hash
if _, err := hph.keccak.Read(hashBuf[1:]); err != nil {
return nil, err
}
buf = append(buf, hashBuf[:]...)
}
return buf, nil
}
func (hph *BinHashed) leafHashWithKeyVal(buf, key []byte, val rlp.RlpSerializableBytes, singleton bool) ([]byte, error) {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, singleton)
}
func (hph *BinHashed) accountLeafHashWithKey(buf, key []byte, val rlp.RlpSerializable) ([]byte, error) {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 48 + key[0] // Odd (1<<4) + first nibble
ni = 1
} else {
compact0 = 32
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 16 + key[0] // Odd (1<<4) + first nibble
ni = 1
}
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = byte(128 + compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, true)
}
func (hph *BinHashed) extensionHash(key []byte, hash []byte) ([length.Hash]byte, error) {
var hashBuf [length.Hash]byte
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
ni = 1
}
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
totalLen := kp + kl + 33
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
hph.keccak.Reset()
if _, err := hph.keccak.Write(lenPrefix[:pt]); err != nil {
return hashBuf, err
}
if _, err := hph.keccak.Write(keyPrefix[:kp]); err != nil {
return hashBuf, err
}
var b [1]byte
b[0] = compact0
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
for i := 1; i < compactLen; i++ {
b[0] = key[ni]*16 + key[ni+1]
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
ni += 2
}
b[0] = 0x80 + length.Hash
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
if _, err := hph.keccak.Write(hash); err != nil {
return hashBuf, err
}
// Replace previous hash with the new one
if _, err := hph.keccak.Read(hashBuf[:]); err != nil {
return hashBuf, err
}
return hashBuf, nil
}
func (hph *BinHashed) computeCellHashLen(cell *BinCell, depth int) int {
if cell.spl > 0 && depth >= keyHalfSize {
keyLen := maxKeySize - depth + 1 // Length of hex key with terminator character
var kp, kl int
compactLen := (keyLen-1)/2 + 1
if compactLen > 1 {
kp = 1
kl = compactLen
} else {
kl = 1
}
val := rlp.RlpSerializableBytes(cell.Storage[:cell.StorageLen])
totalLen := kp + kl + val.DoubleRLPLen()
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
if totalLen+pt < length.Hash {
return totalLen + pt
}
}
return length.Hash + 1
}
func (hph *BinHashed) computeCellHash(cell *BinCell, depth int, buf []byte) ([]byte, error) {
var err error
var storageRootHash [length.Hash]byte
storageRootHashIsSet := false
if cell.spl > 0 {
var hashedKeyOffset int
if depth >= keyHalfSize {
hashedKeyOffset = depth - keyHalfSize
}
singleton := depth <= keyHalfSize
if err := hashKey(hph.keccak, cell.spk[hph.accountKeyLen:cell.spl], cell.downHashedKey[:], hashedKeyOffset); err != nil {
return nil, err
}
cell.downHashedKey[keyHalfSize-hashedKeyOffset] = 16 // Add terminator
if singleton {
if hph.trace {
fmt.Printf("leafHashWithKeyVal(singleton) for [%x]=>[%x]\n", cell.downHashedKey[:keyHalfSize-hashedKeyOffset+1], cell.Storage[:cell.StorageLen])
}
if _, err = hph.leafHashWithKeyVal(storageRootHash[:0], cell.downHashedKey[:keyHalfSize-hashedKeyOffset+1], rlp.RlpSerializableBytes(cell.Storage[:cell.StorageLen]), true); err != nil {
return nil, err
}
storageRootHashIsSet = true
} else {
if hph.trace {
fmt.Printf("leafHashWithKeyVal for [%x]=>[%x]\n", cell.downHashedKey[:keyHalfSize-hashedKeyOffset+1], cell.Storage[:cell.StorageLen])
}
return hph.leafHashWithKeyVal(buf, cell.downHashedKey[:keyHalfSize-hashedKeyOffset+1], rlp.RlpSerializableBytes(cell.Storage[:cell.StorageLen]), false)
}
}
if cell.apl > 0 {
if err := hashKey(hph.keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil {
return nil, err
}
cell.downHashedKey[keyHalfSize-depth] = 16 // Add terminator
if !storageRootHashIsSet {
if cell.extLen > 0 {
// Extension
if cell.hl > 0 {
if hph.trace {
fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl])
}
if storageRootHash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil {
return nil, err
}
} else {
return nil, fmt.Errorf("computeCellHash extension without hash")
}
} else if cell.hl > 0 {
storageRootHash = cell.h
} else {
storageRootHash = *(*[length.Hash]byte)(EmptyRootHash)
}
}
var valBuf [128]byte
valLen := cell.accountForHashing(valBuf[:], storageRootHash)
if hph.trace {
fmt.Printf("accountLeafHashWithKey for [%x]=>[%x]\n", cell.downHashedKey[:keyHalfSize+1-depth], valBuf[:valLen])
}
return hph.accountLeafHashWithKey(buf, cell.downHashedKey[:keyHalfSize+1-depth], rlp.RlpEncodedBytes(valBuf[:valLen]))
}
buf = append(buf, 0x80+32)
if cell.extLen > 0 {
// Extension
if cell.hl > 0 {
if hph.trace {
fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl])
}
var hash [length.Hash]byte
if hash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil {
return nil, err
}
buf = append(buf, hash[:]...)
} else {
return nil, fmt.Errorf("computeCellHash extension without hash")
}
} else if cell.hl > 0 {
buf = append(buf, cell.h[:cell.hl]...)
} else {
buf = append(buf, EmptyRootHash...)
}
return buf, nil
}
func (hph *BinHashed) needUnfolding(hashedKey []byte) int {
var cell *BinCell
var depth int
if hph.activeRows == 0 {
if hph.trace {
fmt.Printf("needUnfolding root, rootChecked = %t\n", hph.rootChecked)
}
cell = &hph.root
if cell.downHashedLen == 0 && cell.hl == 0 && !hph.rootChecked {
// Need to attempt to unfold the root
return 1
}
} else {
col := int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[hph.activeRows-1][col]
depth = hph.depths[hph.activeRows-1]
if hph.trace {
fmt.Printf("needUnfolding cell (%d, %x), currentKey=[%x], depth=%d, cell.h=[%x]\n", hph.activeRows-1, col, hph.currentKey[:hph.currentKeyLen], depth, cell.h[:cell.hl])
}
}
if len(hashedKey) <= depth {
return 0
}
if cell.downHashedLen == 0 {
if cell.hl == 0 {
// cell is empty, no need to unfold further
return 0
} else {
// unfold branch node
return 1
}
}
cpl := commonPrefixLen(hashedKey[depth:], cell.downHashedKey[:cell.downHashedLen-1])
if hph.trace {
fmt.Printf("cpl=%d, cell.downHashedKey=[%x], depth=%d, hashedKey[depth:]=[%x]\n", cpl, cell.downHashedKey[:cell.downHashedLen], depth, hashedKey[depth:])
}
unfolding := cpl + 1
if depth < keyHalfSize && depth+unfolding > keyHalfSize {
// This is to make sure that unfolding always breaks at the level where storage subtrees start
unfolding = keyHalfSize - depth
if hph.trace {
fmt.Printf("adjusted unfolding=%d\n", unfolding)
}
}
return unfolding
}
func (hph *BinHashed) unfoldBranchNode(row int, deleted bool, depth int) error {
branchData, err := hph.branchFn(binToCompact(hph.currentKey[:hph.currentKeyLen]))
if err != nil {
return err
}
if !hph.rootChecked && hph.currentKeyLen == 0 && len(branchData) == 0 {
// Special case - empty or deleted root
hph.rootChecked = true
return nil
}
hph.branchBefore[row] = true
//fmt.Printf("unfoldBranchNode [%x]=>[%x]\n", hph.currentKey[:hph.currentKeyLen], branchData)
bitmap := binary.BigEndian.Uint16(branchData[0:])
pos := 2
if deleted {
// All cells come as deleted (touched but not present after)
hph.afterMap[row] = 0
hph.touchMap[row] = bitmap
} else {
hph.afterMap[row] = bitmap
hph.touchMap[row] = 0
}
//fmt.Printf("unfoldBranchNode [unfoldBranchNode%x], afterMap = [%016b], touchMap = [%016b]\n", branchData, hph.afterMap[row], hph.touchMap[row])
// Loop iterating over the set bits of modMask
for bitset, j := bitmap, 0; bitset != 0; j++ {
bit := bitset & -bitset
nibble := bits.TrailingZeros16(bit)
cell := &hph.grid[row][nibble]
fieldBits := branchData[pos]
pos++
var err error
if pos, err = cell.fillFromFields(branchData, pos, PartFlags(fieldBits)); err != nil {
return fmt.Errorf("prefix [%x], branchData[%x]: %w", hph.currentKey[:hph.currentKeyLen], branchData, err)
}
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d, hash=[%x], a=[%x], s=[%x], ex=[%x]\n", row, nibble, depth, cell.h[:cell.hl], cell.apk[:cell.apl], cell.spk[:cell.spl], cell.extension[:cell.extLen])
}
if cell.apl > 0 {
hph.accountFn(cell.apk[:cell.apl], cell)
if hph.trace {
fmt.Printf("accountFn[%x] return balance=%d, nonce=%d\n", cell.apk[:cell.apl], &cell.Balance, cell.Nonce)
}
}
if cell.spl > 0 {
hph.storageFn(cell.spk[:cell.spl], cell)
}
if err = cell.deriveHashedKeys(depth, hph.keccak, hph.accountKeyLen); err != nil {
return err
}
bitset ^= bit
}
return nil
}
func (hph *BinHashed) unfold(hashedKey []byte, unfolding int) error {
if hph.trace {
fmt.Printf("unfold %d: activeRows: %d\n", unfolding, hph.activeRows)
}
var upCell *BinCell
var touched, present bool
var col byte
var upDepth, depth int
if hph.activeRows == 0 {
if hph.rootChecked && hph.root.hl == 0 && hph.root.downHashedLen == 0 {
// No unfolding for empty root
return nil
}
upCell = &hph.root
touched = hph.rootTouched
present = hph.rootPresent
if hph.trace {
fmt.Printf("root, touched %t, present %t\n", touched, present)
}
} else {
upDepth = hph.depths[hph.activeRows-1]
col = hashedKey[upDepth-1]
upCell = &hph.grid[hph.activeRows-1][col]
touched = hph.touchMap[hph.activeRows-1]&(uint16(1)<<col) != 0
present = hph.afterMap[hph.activeRows-1]&(uint16(1)<<col) != 0
if hph.trace {
fmt.Printf("upCell (%d, %x), touched %t, present %t\n", hph.activeRows-1, col, touched, present)
}
hph.currentKey[hph.currentKeyLen] = col
hph.currentKeyLen++
}
row := hph.activeRows
for i := 0; i < maxChild; i++ {
hph.grid[row][i].fillEmpty()
}
hph.touchMap[row] = 0
hph.afterMap[row] = 0
hph.branchBefore[row] = false
if upCell.downHashedLen == 0 {
depth = upDepth + 1
if err := hph.unfoldBranchNode(row, touched && !present /* deleted */, depth); err != nil {
return err
}
} else if upCell.downHashedLen >= unfolding {
depth = upDepth + unfolding
nibble := upCell.downHashedKey[unfolding-1]
if touched {
hph.touchMap[row] = uint16(1) << nibble
}
if present {
hph.afterMap[row] = uint16(1) << nibble
}
cell := &hph.grid[row][nibble]
cell.fillFromUpperCell(upCell, depth, unfolding)
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d, a=[%x], upa=[%x]\n", row, nibble, depth, cell.apk[:cell.apl], upCell.apk[:upCell.apl])
}
if row >= keyHalfSize {
cell.apl = 0
}
if unfolding > 1 {
copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:unfolding-1])
}
hph.currentKeyLen += unfolding - 1
} else {
// upCell.downHashedLen < unfolding
depth = upDepth + upCell.downHashedLen
nibble := upCell.downHashedKey[upCell.downHashedLen-1]
if touched {
hph.touchMap[row] = uint16(1) << nibble
}
if present {
hph.afterMap[row] = uint16(1) << nibble
}
cell := &hph.grid[row][nibble]
cell.fillFromUpperCell(upCell, depth, upCell.downHashedLen)
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d, a=[%x], upa=[%x]\n", row, nibble, depth, cell.apk[:cell.apl], upCell.apk[:upCell.apl])
}
if row >= keyHalfSize {
cell.apl = 0
}
if upCell.downHashedLen > 1 {
copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:upCell.downHashedLen-1])
}
hph.currentKeyLen += upCell.downHashedLen - 1
}
hph.depths[hph.activeRows] = depth
hph.activeRows++
return nil
}
func (hph *BinHashed) needFolding(hashedKey []byte) bool {
return !bytes.HasPrefix(hashedKey, hph.currentKey[:hph.currentKeyLen])
}
func binToCompact(bin []byte) []byte {
compact := make([]byte, 2+(len(bin)+7)/8)
binary.BigEndian.PutUint16(compact, uint16(len(bin)))
for i := 0; i < len(bin); i++ {
if bin[i] != 0 {
compact[2+i/8] |= (byte(1) << (i % 8))
}
}
return compact
}
func compactToBin(compact []byte) []byte {
bin := make([]byte, binary.BigEndian.Uint16(compact))
for i := 0; i < len(bin); i++ {
if compact[2+i/8]&(byte(1)<<(i%8)) == 0 {
bin[i] = 0
} else {
bin[i] = 1
}
}
return bin
}
// The purpose of fold is to reduce hph.currentKey[:hph.currentKeyLen]. It should be invoked
// until that current key becomes a prefix of hashedKey that we will proccess next
// (in other words until the needFolding function returns 0)
func (hph *BinHashed) fold() ([]byte, []byte, error) {
updateKeyLen := hph.currentKeyLen
if hph.activeRows == 0 {
return nil, nil, fmt.Errorf("cannot fold - no active rows")
}
if hph.trace {
fmt.Printf("fold: activeRows: %d, currentKey: [%x], touchMap: %016b, afterMap: %016b\n", hph.activeRows, hph.currentKey[:hph.currentKeyLen], hph.touchMap[hph.activeRows-1], hph.afterMap[hph.activeRows-1])
}
// Move information to the row above
row := hph.activeRows - 1
var upCell *BinCell
var col int
var upDepth int
if hph.activeRows == 1 {
if hph.trace {
fmt.Printf("upcell is root\n")
}
upCell = &hph.root
} else {
upDepth = hph.depths[hph.activeRows-2]
col = int(hph.currentKey[upDepth-1])
if hph.trace {
fmt.Printf("upcell is (%d x %x), upDepth=%d\n", row-1, col, upDepth)
}
upCell = &hph.grid[row-1][col]
}
depth := hph.depths[hph.activeRows-1]
var branchData []byte
var bitmapBuf [4]byte
updateKey := binToCompact(hph.currentKey[:updateKeyLen])
if hph.trace {
fmt.Printf("touchMap[%d]=%016b, afterMap[%d]=%016b\n", row, hph.touchMap[row], row, hph.afterMap[row])
}
partsCount := bits.OnesCount16(hph.afterMap[row])
switch partsCount {
case 0:
// Everything deleted
if hph.touchMap[row] != 0 {
if row == 0 {
// Root is deleted because the tree is empty
hph.rootTouched = true
hph.rootPresent = false
} else if upDepth == keyHalfSize {
// Special case - all storage items of an account have been deleted, but it does not automatically delete the account, just makes it empty storage
// Therefore we are not propagating deletion upwards, but turn it into a modification
hph.touchMap[row-1] |= (uint16(1) << col)
} else {
// Deletion is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
hph.afterMap[row-1] &^= (uint16(1) << col)
}
}
upCell.hl = 0
upCell.apl = 0
upCell.spl = 0
upCell.extLen = 0
upCell.downHashedLen = 0
if hph.branchBefore[row] {
binary.BigEndian.PutUint16(bitmapBuf[0:], hph.touchMap[row]) // touchMap
binary.BigEndian.PutUint16(bitmapBuf[2:], 0) // afterMap
branchData = append(branchData, bitmapBuf[:]...)
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
case 1:
// Leaf or extension node
if hph.touchMap[row] != 0 {
// any modifications
if row == 0 {
hph.rootTouched = true
} else {
// Modifiction is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
}
}
nibble := bits.TrailingZeros16(hph.afterMap[row])
cell := &hph.grid[row][nibble]
upCell.extLen = 0
upCell.fillFromLowerCell(cell, depth, hph.currentKey[upDepth:hph.currentKeyLen], nibble)
// Delete if it existed
if hph.branchBefore[row] {
binary.BigEndian.PutUint16(bitmapBuf[0:], hph.touchMap[row]) // touchMap
binary.BigEndian.PutUint16(bitmapBuf[2:], 0) // afterMap
branchData = append(branchData, bitmapBuf[:]...)
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
default:
// Branch node
if hph.touchMap[row] != 0 {
// any modifications
if row == 0 {
hph.rootTouched = true
} else {
// Modifiction is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
}
}
bitmap := hph.touchMap[row] & hph.afterMap[row]
if !hph.branchBefore[row] {
// There was no branch node before, so we need to touch even the singular child that existed
hph.touchMap[row] |= hph.afterMap[row]
bitmap |= hph.afterMap[row]
}
// Calculate total length of all hashes
totalBranchLen := 17 - partsCount // For every empty cell, one byte
for bitset, j := hph.afterMap[row], 0; bitset != 0; j++ {
bit := bitset & -bitset
nibble := bits.TrailingZeros16(bit)
cell := &hph.grid[row][nibble]
totalBranchLen += hph.computeCellHashLen(cell, depth)
bitset ^= bit
}
binary.BigEndian.PutUint16(bitmapBuf[0:], hph.touchMap[row])
binary.BigEndian.PutUint16(bitmapBuf[2:], hph.afterMap[row])
branchData = append(branchData, bitmapBuf[:]...)
hph.keccak2.Reset()
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalBranchLen)
if _, err := hph.keccak2.Write(lenPrefix[:pt]); err != nil {
return nil, nil, err
}
var lastNibble int
var b [1]byte
var cellHashBuf [33]byte
for bitset, j := hph.afterMap[row], 0; bitset != 0; j++ {
bit := bitset & -bitset
nibble := bits.TrailingZeros16(bit)
b[0] = 0x80
for i := lastNibble; i < nibble; i++ {
if _, err := hph.keccak2.Write(b[:]); err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("%x: empty(%d,%x)\n", i, row, i)
}
}
lastNibble = nibble + 1
cell := &hph.grid[row][nibble]
cellHash, err := hph.computeCellHash(cell, depth, cellHashBuf[:0])
if err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("%x: computeCellHash(%d,%x,depth=%d)=[%x]\n", nibble, row, nibble, depth, cellHash)
}
if _, err = hph.keccak2.Write(cellHash); err != nil {
return nil, nil, err
}
if bitmap&bit != 0 {
var fieldBits PartFlags
if cell.extLen > 0 && cell.spl == 0 {
fieldBits |= HASHEDKEY_PART
}
if cell.apl > 0 {
fieldBits |= ACCOUNT_PLAIN_PART
}
if cell.spl > 0 {
fieldBits |= STORAGE_PLAIN_PART
}
if cell.hl > 0 {
fieldBits |= HASH_PART
}
branchData = append(branchData, byte(fieldBits))
if cell.extLen > 0 && cell.spl == 0 {
n := binary.PutUvarint(hph.numBuf[:], uint64(cell.extLen))
branchData = append(branchData, hph.numBuf[:n]...)
branchData = append(branchData, cell.extension[:cell.extLen]...)
}
if cell.apl > 0 {
n := binary.PutUvarint(hph.numBuf[:], uint64(cell.apl))
branchData = append(branchData, hph.numBuf[:n]...)
branchData = append(branchData, cell.apk[:cell.apl]...)
}
if cell.spl > 0 {
n := binary.PutUvarint(hph.numBuf[:], uint64(cell.spl))
branchData = append(branchData, hph.numBuf[:n]...)
branchData = append(branchData, cell.spk[:cell.spl]...)
}
if cell.hl > 0 {
n := binary.PutUvarint(hph.numBuf[:], uint64(cell.hl))
branchData = append(branchData, hph.numBuf[:n]...)
branchData = append(branchData, cell.h[:cell.hl]...)
}
}
bitset ^= bit
}
b[0] = 0x80
for i := lastNibble; i < maxChild+1; i++ {
if _, err := hph.keccak2.Write(b[:]); err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("%x: empty(%d,%x)\n", i, row, i)
}
}
upCell.extLen = depth - upDepth - 1
if upCell.extLen > 0 {
copy(upCell.extension[:], hph.currentKey[upDepth:hph.currentKeyLen])
}
if depth < keyHalfSize {
upCell.apl = 0
}
upCell.spl = 0
upCell.hl = 32
if _, err := hph.keccak2.Read(upCell.h[:]); err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("} [%x]\n", upCell.h[:])
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
}
if branchData != nil {
if hph.trace {
fmt.Printf("fold: update key: [%x], branchData: [%x]\n", compactToBin(updateKey), branchData)
}
}
return branchData, updateKey, nil
}
func (hph *BinHashed) deleteCell(hashedKey []byte) {
if hph.trace {
fmt.Printf("deleteCell, activeRows = %d\n", hph.activeRows)
}
var cell *BinCell
if hph.activeRows == 0 {
// Remove the root
cell = &hph.root
hph.rootTouched = true
hph.rootPresent = false
} else {
row := hph.activeRows - 1
if hph.depths[row] < len(hashedKey) {
if hph.trace {
fmt.Printf("deleteCell skipping spurious delete depth=%d, len(hashedKey)=%d\n", hph.depths[row], len(hashedKey))
}
return
}
col := int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[row][col]
if hph.afterMap[row]&(uint16(1)<<col) != 0 {
// Prevent "spurios deletions", i.e. deletion of absent items
hph.touchMap[row] |= (uint16(1) << col)
hph.afterMap[row] &^= (uint16(1) << col)
if hph.trace {
fmt.Printf("deleteCell setting (%d, %x)\n", row, col)
}
} else {
if hph.trace {
fmt.Printf("deleteCell ignoring (%d, %x)\n", row, col)
}
}
}
cell.extLen = 0
cell.Balance.Clear()
copy(cell.CodeHash[:], EmptyCodeHash)
cell.Nonce = 0
}
func (hph *BinHashed) updateAccount(plainKey, hashedKey []byte) *BinCell {
var cell *BinCell
var col, depth int
if hph.activeRows == 0 {
hph.activeRows++
}
row := hph.activeRows - 1
depth = hph.depths[hph.activeRows-1]
col = int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[row][col]
hph.touchMap[row] |= (uint16(1) << col)
hph.afterMap[row] |= (uint16(1) << col)
if hph.trace {
fmt.Printf("updateAccount setting (%d, %x), depth=%d\n", row, col, depth)
}
if cell.downHashedLen == 0 {
copy(cell.downHashedKey[:], hashedKey[depth:])
cell.downHashedLen = len(hashedKey) - depth
if hph.trace {
fmt.Printf("set downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
} else {
if hph.trace {
fmt.Printf("left downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
}
cell.apl = len(plainKey)
copy(cell.apk[:], plainKey)
return cell
}
func (hph *BinHashed) updateBalance(plainKey, hashedKey []byte, balance *uint256.Int) {
if hph.trace {
fmt.Printf("updateBalance [%x] [%x] = %d, activeRows = %d\n", plainKey, hashedKey, balance, hph.activeRows)
}
cell := hph.updateAccount(plainKey, hashedKey)
cell.Balance.Set(balance)
}
func (hph *BinHashed) updateCode(plainKey, hashedKey, codeHash []byte) {
if hph.trace {
fmt.Printf("updateCode, activeRows = %d\n", hph.activeRows)
}
cell := hph.updateAccount(plainKey, hashedKey)
copy(cell.CodeHash[:], codeHash)
}
func (hph *BinHashed) updateNonce(plainKey, hashedKey []byte, nonce uint64) {
if hph.trace {
fmt.Printf("updateNonce, activeRows = %d\n", hph.activeRows)
}
cell := hph.updateAccount(plainKey, hashedKey)
cell.Nonce = nonce
}
func (hph *BinHashed) updateStorage(plainKey, hashedKey, value []byte) {
if hph.trace {
fmt.Printf("updateStorage, activeRows = %d\n", hph.activeRows)
}
var col, depth int
var cell *BinCell
if hph.activeRows == 0 {
hph.activeRows++
}
depth = hph.depths[hph.activeRows-1]
col = int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[hph.activeRows-1][col]
hph.touchMap[hph.activeRows-1] |= (uint16(1) << col)
hph.afterMap[hph.activeRows-1] |= (uint16(1) << col)
if hph.trace {
fmt.Printf("updateStorage setting (%d, %x), touchMap[%d]=%016b, depth=%d\n", hph.activeRows-1, col, hph.activeRows-1, hph.touchMap[hph.activeRows-1], depth)
}
if cell.downHashedLen == 0 {
copy(cell.downHashedKey[:], hashedKey[depth:])
cell.downHashedLen = len(hashedKey) - depth
if hph.trace {
fmt.Printf("set downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
} else {
if hph.trace {
fmt.Printf("left downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
}
copy(cell.spk[:], plainKey)
cell.spl = len(plainKey)
cell.StorageLen = len(value)
if len(value) > 0 {
copy(cell.Storage[:], value)
}
}
type BinCell struct {
h [length.Hash]byte // cell hash
hl int // Length of the hash (or embedded)
apk [length.Addr]byte // account plain key
apl int // length of account plain key
spk [length.Addr + length.Hash]byte // storage plain key
spl int // length of the storage plain key
downHashedKey [maxKeySize]byte
downHashedLen int
extension [64]byte
extLen int
Nonce uint64
Balance uint256.Int
CodeHash [length.Hash]byte // hash of the bytecode
Storage [length.Hash]byte
StorageLen int
}
func (cell *BinCell) fillEmpty() {
cell.apl = 0
cell.spl = 0
cell.downHashedLen = 0
cell.extLen = 0
cell.hl = 0
cell.Nonce = 0
cell.Balance.Clear()
copy(cell.CodeHash[:], EmptyCodeHash)
cell.StorageLen = 0
}
func (cell *BinCell) fillFromUpperCell(upCell *BinCell, depth, depthIncrement int) {
if upCell.downHashedLen >= depthIncrement {
cell.downHashedLen = upCell.downHashedLen - depthIncrement
} else {
cell.downHashedLen = 0
}
if upCell.downHashedLen > depthIncrement {
copy(cell.downHashedKey[:], upCell.downHashedKey[depthIncrement:upCell.downHashedLen])
}
if upCell.extLen >= depthIncrement {
cell.extLen = upCell.extLen - depthIncrement
} else {
cell.extLen = 0
}
if upCell.extLen > depthIncrement {
copy(cell.extension[:], upCell.extension[depthIncrement:upCell.extLen])
}
if depth <= keyHalfSize {
cell.apl = upCell.apl
if upCell.apl > 0 {
copy(cell.apk[:], upCell.apk[:cell.apl])
cell.Balance.Set(&upCell.Balance)
cell.Nonce = upCell.Nonce
copy(cell.CodeHash[:], upCell.CodeHash[:])
cell.extLen = upCell.extLen
if upCell.extLen > 0 {
copy(cell.extension[:], upCell.extension[:upCell.extLen])
}
}
} else {
cell.apl = 0
}
cell.spl = upCell.spl
if upCell.spl > 0 {
copy(cell.spk[:], upCell.spk[:upCell.spl])
cell.StorageLen = upCell.StorageLen
if upCell.StorageLen > 0 {
copy(cell.Storage[:], upCell.Storage[:upCell.StorageLen])
}
}
cell.hl = upCell.hl
if upCell.hl > 0 {
copy(cell.h[:], upCell.h[:upCell.hl])
}
}
func (cell *BinCell) fillFromLowerCell(lowCell *BinCell, lowDepth int, preExtension []byte, nibble int) {
if lowCell.apl > 0 || lowDepth < keyHalfSize {
cell.apl = lowCell.apl
}
if lowCell.apl > 0 {
copy(cell.apk[:], lowCell.apk[:cell.apl])
cell.Balance.Set(&lowCell.Balance)
cell.Nonce = lowCell.Nonce
copy(cell.CodeHash[:], lowCell.CodeHash[:])
}
cell.spl = lowCell.spl
if lowCell.spl > 0 {
copy(cell.spk[:], lowCell.spk[:cell.spl])
cell.StorageLen = lowCell.StorageLen
if lowCell.StorageLen > 0 {
copy(cell.Storage[:], lowCell.Storage[:lowCell.StorageLen])
}
}
if lowCell.hl > 0 {
if (lowCell.apl == 0 && lowDepth < keyHalfSize) || (lowCell.spl == 0 && lowDepth > keyHalfSize) {
// Extension is related to either accounts branch node, or storage branch node, we prepend it by preExtension | nibble
if len(preExtension) > 0 {
copy(cell.extension[:], preExtension)
}
cell.extension[len(preExtension)] = byte(nibble)
if lowCell.extLen > 0 {
copy(cell.extension[1+len(preExtension):], lowCell.extension[:lowCell.extLen])
}
cell.extLen = lowCell.extLen + 1 + len(preExtension)
} else {
// Extension is related to a storage branch node, so we copy it upwards as is
cell.extLen = lowCell.extLen
if lowCell.extLen > 0 {
copy(cell.extension[:], lowCell.extension[:lowCell.extLen])
}
}
}
cell.hl = lowCell.hl
if lowCell.hl > 0 {
copy(cell.h[:], lowCell.h[:lowCell.hl])
}
}
func binHashKey(keccak keccakState, plainKey []byte, dest []byte, hashedKeyOffset int) error {
keccak.Reset()
var hashBufBack [length.Hash]byte
hashBuf := hashBufBack[:]
if _, err := keccak.Write(plainKey); err != nil {
return err
}
if _, err := keccak.Read(hashBuf); err != nil {
return err
}
for k := hashedKeyOffset; k < 256; k++ {
if hashBuf[k/8]&(1<<(7-k%8)) == 0 {
dest[k-hashedKeyOffset] = 0
} else {
dest[k-hashedKeyOffset] = 1
}
}
return nil
}
func (cell *BinCell) deriveHashedKeys(depth int, keccak keccakState, accountKeyLen int) error {
extraLen := 0
if cell.apl > 0 {
if depth > keyHalfSize {
return fmt.Errorf("deriveHashedKeys accountPlainKey present at depth > 512")
}
extraLen = keyHalfSize - depth
}
if cell.spl > 0 {
if depth >= keyHalfSize {
extraLen = maxKeySize - depth
} else {
extraLen += keyHalfSize
}
}
if extraLen > 0 {
if cell.downHashedLen > 0 {
copy(cell.downHashedKey[extraLen:], cell.downHashedKey[:cell.downHashedLen])
}
cell.downHashedLen += extraLen
var hashedKeyOffset, downOffset int
if cell.apl > 0 {
if err := binHashKey(keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil {
return err
}
downOffset = keyHalfSize - depth
}
if cell.spl > 0 {
if depth >= keyHalfSize {
hashedKeyOffset = depth - keyHalfSize
}
if err := binHashKey(keccak, cell.spk[accountKeyLen:cell.spl], cell.downHashedKey[downOffset:], hashedKeyOffset); err != nil {
return err
}
}
}
return nil
}
func (cell *BinCell) fillFromFields(data []byte, pos int, fieldBits PartFlags) (int, error) {
if fieldBits&HASHEDKEY_PART != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for hashedKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey")
}
cell.downHashedLen = int(l)
cell.extLen = int(l)
if l > 0 {
copy(cell.downHashedKey[:], data[pos:pos+int(l)])
copy(cell.extension[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.downHashedLen = 0
cell.extLen = 0
}
if fieldBits&ACCOUNT_PLAIN_PART != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for accountPlainKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey")
}
cell.apl = int(l)
if l > 0 {
copy(cell.apk[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.apl = 0
}
if fieldBits&STORAGE_PLAIN_PART != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for storagePlainKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey")
}
cell.spl = int(l)
if l > 0 {
copy(cell.spk[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.spl = 0
}
if fieldBits&HASH_PART != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for hash len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for hash len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for hash")
}
cell.hl = int(l)
if l > 0 {
copy(cell.h[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.hl = 0
}
return pos, nil
}
func (cell *BinCell) accountForHashing(buffer []byte, storageRootHash [length.Hash]byte) int {
balanceBytes := 0
if !cell.Balance.LtUint64(128) {
balanceBytes = cell.Balance.ByteLen()
}
var nonceBytes int
if cell.Nonce < 128 && cell.Nonce != 0 {
nonceBytes = 0
} else {
nonceBytes = (bits.Len64(cell.Nonce) + 7) / 8
}
var structLength = uint(balanceBytes + nonceBytes + 2)
structLength += 66 // Two 32-byte arrays + 2 prefixes
var pos int
if structLength < 56 {
buffer[0] = byte(192 + structLength)
pos = 1
} else {
lengthBytes := (bits.Len(structLength) + 7) / 8
buffer[0] = byte(247 + lengthBytes)
for i := lengthBytes; i > 0; i-- {
buffer[i] = byte(structLength)
structLength >>= 8
}
pos = lengthBytes + 1
}
// Encoding nonce
if cell.Nonce < 128 && cell.Nonce != 0 {
buffer[pos] = byte(cell.Nonce)
} else {
buffer[pos] = byte(128 + nonceBytes)
var nonce = cell.Nonce
for i := nonceBytes; i > 0; i-- {
buffer[pos+i] = byte(nonce)
nonce >>= 8
}
}
pos += 1 + nonceBytes
// Encoding balance
if cell.Balance.LtUint64(128) && !cell.Balance.IsZero() {
buffer[pos] = byte(cell.Balance.Uint64())
pos++
} else {
buffer[pos] = byte(128 + balanceBytes)
pos++
cell.Balance.WriteToSlice(buffer[pos : pos+balanceBytes])
pos += balanceBytes
}
// Encoding Root and CodeHash
buffer[pos] = 128 + 32
pos++
copy(buffer[pos:], storageRootHash[:])
pos += 32
buffer[pos] = 128 + 32
pos++
copy(buffer[pos:], cell.CodeHash[:])
pos += 32
return pos
}