mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-04 01:54:28 +00:00
1428 lines
39 KiB
Go
1428 lines
39 KiB
Go
/*
|
||
Copyright 2021 Erigon contributors
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License");
|
||
you may not use this file except in compliance with the License.
|
||
You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software
|
||
distributed under the License is distributed on an "AS IS" BASIS,
|
||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
See the License for the specific language governing permissions and
|
||
limitations under the License.
|
||
*/
|
||
|
||
package compress
|
||
|
||
import (
|
||
"bufio"
|
||
"bytes"
|
||
"container/heap"
|
||
"context"
|
||
"encoding/binary"
|
||
"errors"
|
||
"fmt"
|
||
"io"
|
||
"io/ioutil"
|
||
"math/bits"
|
||
"os"
|
||
"path/filepath"
|
||
"sort"
|
||
"sync"
|
||
"time"
|
||
|
||
"github.com/flanglet/kanzi-go/transform"
|
||
"github.com/ledgerwatch/erigon-lib/common"
|
||
dir2 "github.com/ledgerwatch/erigon-lib/common/dir"
|
||
"github.com/ledgerwatch/erigon-lib/etl"
|
||
"github.com/ledgerwatch/erigon-lib/patricia"
|
||
"github.com/ledgerwatch/log/v3"
|
||
)
|
||
|
||
const ASSERT = false
|
||
|
||
// Compressor is the main operating type for performing per-word compression
|
||
// After creating a compression, one needs to add superstrings to it, using `AddWord` function
|
||
// In order to add word without compression, function `AddUncompressedWord` needs to be used
|
||
// Compressor only tracks which words are compressed and which are not until the compressed
|
||
// file is created. After that, the user of the file needs to know when to call
|
||
// `Next` or `NextUncompressed` function on the decompressor.
|
||
// After that, `Compress` function needs to be called to perform the compression
|
||
// and eventually create output file
|
||
type Compressor struct {
|
||
uncompressedFile *DecompressedFile
|
||
outputFile, tmpOutFilePath string // File where to output the dictionary and compressed data
|
||
tmpDir string // temporary directory to use for ETL when building dictionary
|
||
workers int
|
||
|
||
// Buffer for "superstring" - transformation of superstrings where each byte of a word, say b,
|
||
// is turned into 2 bytes, 0x01 and b, and two zero bytes 0x00 0x00 are inserted after each word
|
||
// this is needed for using ordinary (one string) suffix sorting algorithm instead of a generalised (many superstrings) suffix
|
||
// sorting algorithm
|
||
superstring []byte
|
||
superstrings chan []byte
|
||
wg *sync.WaitGroup
|
||
suffixCollectors []*etl.Collector
|
||
wordsCount uint64
|
||
|
||
ctx context.Context
|
||
logPrefix string
|
||
Ratio CompressionRatio
|
||
trace bool
|
||
lvl log.Lvl
|
||
}
|
||
|
||
func NewCompressor(ctx context.Context, logPrefix, outputFile, tmpDir string, minPatternScore uint64, workers int, lvl log.Lvl) (*Compressor, error) {
|
||
dir2.MustExist(tmpDir)
|
||
dir, fileName := filepath.Split(outputFile)
|
||
tmpOutFilePath := filepath.Join(dir, fileName) + ".tmp"
|
||
ext := filepath.Ext(fileName)
|
||
// UncompressedFile - it's intermediate .idt file, outputFile it's final .seg (or .dat) file.
|
||
// tmpOutFilePath - it's ".seg.tmp" (".idt.tmp") file which will be renamed to .seg file if everything succeed.
|
||
// It allow atomically create .seg file (downloader will not see partially ready/ non-ready .seg files).
|
||
// I didn't create ".seg.tmp" file in tmpDir, because I think tmpDir and snapsthoDir may be mounted to different drives
|
||
uncompressedPath := filepath.Join(tmpDir, fileName[:len(fileName)-len(ext)]) + ".idt"
|
||
|
||
uncompressedFile, err := NewUncompressedFile(uncompressedPath)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
// Collector for dictionary superstrings (sorted by their score)
|
||
superstrings := make(chan []byte, workers*2)
|
||
wg := &sync.WaitGroup{}
|
||
wg.Add(workers)
|
||
suffixCollectors := make([]*etl.Collector, workers)
|
||
for i := 0; i < workers; i++ {
|
||
collector := etl.NewCollector(compressLogPrefix, tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize))
|
||
suffixCollectors[i] = collector
|
||
go processSuperstring(superstrings, collector, minPatternScore, wg)
|
||
}
|
||
|
||
return &Compressor{
|
||
uncompressedFile: uncompressedFile,
|
||
tmpOutFilePath: tmpOutFilePath,
|
||
outputFile: outputFile,
|
||
tmpDir: tmpDir,
|
||
logPrefix: logPrefix,
|
||
workers: workers,
|
||
ctx: ctx,
|
||
superstrings: superstrings,
|
||
suffixCollectors: suffixCollectors,
|
||
lvl: lvl,
|
||
wg: wg,
|
||
}, nil
|
||
}
|
||
|
||
func (c *Compressor) Close() {
|
||
c.uncompressedFile.Close()
|
||
for _, collector := range c.suffixCollectors {
|
||
collector.Close()
|
||
}
|
||
c.suffixCollectors = nil
|
||
}
|
||
|
||
func (c *Compressor) SetTrace(trace bool) {
|
||
c.trace = trace
|
||
}
|
||
|
||
func (c *Compressor) Count() int { return int(c.wordsCount) }
|
||
|
||
func (c *Compressor) AddWord(word []byte) error {
|
||
c.wordsCount++
|
||
|
||
if len(c.superstring)+2*len(word)+2 > superstringLimit {
|
||
c.superstrings <- c.superstring
|
||
c.superstring = nil
|
||
}
|
||
for _, a := range word {
|
||
c.superstring = append(c.superstring, 1, a)
|
||
}
|
||
c.superstring = append(c.superstring, 0, 0)
|
||
|
||
return c.uncompressedFile.Append(word)
|
||
}
|
||
|
||
func (c *Compressor) AddUncompressedWord(word []byte) error {
|
||
c.wordsCount++
|
||
return c.uncompressedFile.AppendUncompressed(word)
|
||
}
|
||
|
||
func (c *Compressor) Compress() error {
|
||
c.uncompressedFile.w.Flush()
|
||
logEvery := time.NewTicker(20 * time.Second)
|
||
defer logEvery.Stop()
|
||
if len(c.superstring) > 0 {
|
||
c.superstrings <- c.superstring
|
||
}
|
||
close(c.superstrings)
|
||
c.wg.Wait()
|
||
|
||
db, err := DictionaryBuilderFromCollectors(c.ctx, compressLogPrefix, c.tmpDir, c.suffixCollectors)
|
||
if err != nil {
|
||
|
||
return err
|
||
}
|
||
if c.trace {
|
||
_, fileName := filepath.Split(c.outputFile)
|
||
if err := PersistDictrionary(filepath.Join(c.tmpDir, fileName)+".dictionary.txt", db); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
|
||
defer os.Remove(c.tmpOutFilePath)
|
||
if err := reducedict(c.ctx, c.trace, c.logPrefix, c.tmpOutFilePath, c.uncompressedFile, c.workers, db, c.lvl); err != nil {
|
||
return err
|
||
}
|
||
|
||
if err := os.Rename(c.tmpOutFilePath, c.outputFile); err != nil {
|
||
return fmt.Errorf("renaming: %w", err)
|
||
}
|
||
c.Ratio, err = Ratio(c.uncompressedFile.filePath, c.outputFile)
|
||
if err != nil {
|
||
return fmt.Errorf("ratio: %w", err)
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
type CompressorSequential struct {
|
||
outputFile string // File where to output the dictionary and compressed data
|
||
tmpDir string // temporary directory to use for ETL when building dictionary
|
||
minPatternScore uint64 //minimum score (per superstring) required to consider including pattern into the dictionary
|
||
// Buffer for "superstring" - transformation of superstrings where each byte of a word, say b,
|
||
// is turned into 2 bytes, 0x01 and b, and two zero bytes 0x00 0x00 are inserted after each word
|
||
// this is needed for using ordinary (one string) suffix sorting algorithm instead of a generalised (many superstrings) suffix
|
||
// sorting algorithm
|
||
superstring []byte
|
||
divsufsort *transform.DivSufSort // Instance of DivSufSort - algorithm for building suffix array for the superstring
|
||
suffixarray []int32 // Suffix array - output for divsufsort algorithm
|
||
lcp []int32 // LCP array (Longest Common Prefix)
|
||
collector *etl.Collector // Collector used to handle very large sets of superstrings
|
||
numBuf [binary.MaxVarintLen64]byte // Buffer for producing var int serialisation
|
||
collectBuf []byte // Buffer for forming key to call collector
|
||
dictBuilder DictionaryBuilder // Priority queue that selects dictionary patterns with highest scores, and then sorts them by scores
|
||
pt patricia.PatriciaTree // Patricia tree of dictionary patterns
|
||
mf patricia.MatchFinder // Match finder to use together with patricia tree (it stores search context and buffers matches)
|
||
ring *Ring // Cycling ring for dynamic programming algorithm determining optimal coverage of word by dictionary patterns
|
||
wordFile *os.File // Temporary file to keep superstrings in for the second pass
|
||
wordW *bufio.Writer // Bufferred writer for temporary file
|
||
interFile *os.File // File to write intermediate compression to
|
||
interW *bufio.Writer // Buffered writer associate to interFile
|
||
patterns []int // Buffer of pattern ids (used in the dynamic programming algorithm to remember patterns corresponding to dynamic cells)
|
||
uncovered []int // Buffer of intervals that are not covered by patterns
|
||
posMap map[uint64]uint64 // Counter of use for each position within compressed word (for building huffman code for positions)
|
||
|
||
wordsCount, emptyWordsCount uint64
|
||
}
|
||
|
||
// superstringLimit limits how large can one "superstring" get before it is processed
|
||
// CompressorSequential allocates 7 bytes for each uint of superstringLimit. For example,
|
||
// superstingLimit 16m will result in 112Mb being allocated for various arrays
|
||
const superstringLimit = 16 * 1024 * 1024
|
||
|
||
// minPatternLen is minimum length of pattern we consider to be included into the dictionary
|
||
const minPatternLen = 5
|
||
const maxPatternLen = 128
|
||
|
||
// maxDictPatterns is the maximum number of patterns allowed in the initial (not reduced dictionary)
|
||
// Large values increase memory consumption of dictionary reduction phase
|
||
const maxDictPatterns = 1 * 1024 * 1024
|
||
|
||
//nolint
|
||
const compressLogPrefix = "compress"
|
||
|
||
type DictionaryBuilder struct {
|
||
limit int
|
||
lastWord []byte
|
||
lastWordScore uint64
|
||
items []*Pattern
|
||
}
|
||
|
||
func (db *DictionaryBuilder) Reset(limit int) {
|
||
db.limit = limit
|
||
db.items = db.items[:0]
|
||
}
|
||
|
||
func (db DictionaryBuilder) Len() int {
|
||
return len(db.items)
|
||
}
|
||
|
||
func (db DictionaryBuilder) Less(i, j int) bool {
|
||
if db.items[i].score == db.items[j].score {
|
||
return bytes.Compare(db.items[i].word, db.items[j].word) < 0
|
||
}
|
||
return db.items[i].score < db.items[j].score
|
||
}
|
||
|
||
func (db *DictionaryBuilder) Swap(i, j int) {
|
||
db.items[i], db.items[j] = db.items[j], db.items[i]
|
||
}
|
||
|
||
func (db *DictionaryBuilder) Push(x interface{}) {
|
||
db.items = append(db.items, x.(*Pattern))
|
||
}
|
||
|
||
func (db *DictionaryBuilder) Pop() interface{} {
|
||
old := db.items
|
||
n := len(old)
|
||
x := old[n-1]
|
||
db.items = old[0 : n-1]
|
||
return x
|
||
}
|
||
|
||
func (db *DictionaryBuilder) processWord(chars []byte, score uint64) {
|
||
heap.Push(db, &Pattern{word: common.Copy(chars), score: score})
|
||
if db.Len() > db.limit {
|
||
// Remove the element with smallest score
|
||
heap.Pop(db)
|
||
}
|
||
}
|
||
|
||
func (db *DictionaryBuilder) loadFunc(k, v []byte, table etl.CurrentTableReader, next etl.LoadNextFunc) error {
|
||
score := binary.BigEndian.Uint64(v)
|
||
if bytes.Equal(k, db.lastWord) {
|
||
db.lastWordScore += score
|
||
} else {
|
||
if db.lastWord != nil {
|
||
db.processWord(db.lastWord, db.lastWordScore)
|
||
}
|
||
db.lastWord = append(db.lastWord[:0], k...)
|
||
db.lastWordScore = score
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (db *DictionaryBuilder) finish() {
|
||
if db.lastWord != nil {
|
||
db.processWord(db.lastWord, db.lastWordScore)
|
||
}
|
||
}
|
||
|
||
func (db *DictionaryBuilder) ForEach(f func(score uint64, word []byte)) {
|
||
for i := db.Len(); i > 0; i-- {
|
||
f(db.items[i-1].score, db.items[i-1].word)
|
||
}
|
||
}
|
||
|
||
func (db *DictionaryBuilder) Close() {
|
||
db.items = nil
|
||
db.lastWord = nil
|
||
}
|
||
|
||
// Pattern is representation of a pattern that is searched in the superstrings to compress them
|
||
// patterns are stored in a patricia tree and contain pattern score (calculated during
|
||
// the initial dictionary building), frequency of usage, and code
|
||
type Pattern struct {
|
||
score uint64 // Score assigned to the pattern during dictionary building
|
||
uses uint64 // How many times this pattern has been used during search and optimisation
|
||
code uint64 // Allocated numerical code
|
||
codeBits int // Number of bits in the code
|
||
word []byte // Pattern characters
|
||
depth int // Depth of the pattern in the huffman tree (for encoding in the file)
|
||
}
|
||
|
||
// PatternList is a sorted list of pattern for the purpose of
|
||
// building Huffman tree to determine efficient coding.
|
||
// Patterns with least usage come first, we use numerical code
|
||
// as a tie breaker to make sure the resulting Huffman code is canonical
|
||
type PatternList []*Pattern
|
||
|
||
func (pl PatternList) Len() int {
|
||
return len(pl)
|
||
}
|
||
|
||
func (pl PatternList) Less(i, j int) bool {
|
||
if pl[i].uses == pl[j].uses {
|
||
return bits.Reverse64(pl[i].code) < bits.Reverse64(pl[j].code)
|
||
}
|
||
return pl[i].uses < pl[j].uses
|
||
}
|
||
|
||
func (pl *PatternList) Swap(i, j int) {
|
||
(*pl)[i], (*pl)[j] = (*pl)[j], (*pl)[i]
|
||
}
|
||
|
||
// PatternHuff is an intermediate node in a huffman tree of patterns
|
||
// It has two children, each of which may either be another intermediate node (h0 or h1)
|
||
// or leaf node, which is Pattern (p0 or p1).
|
||
type PatternHuff struct {
|
||
uses uint64
|
||
tieBreaker uint64
|
||
p0, p1 *Pattern
|
||
h0, h1 *PatternHuff
|
||
}
|
||
|
||
func (h *PatternHuff) AddZero() {
|
||
if h.p0 != nil {
|
||
h.p0.code <<= 1
|
||
h.p0.codeBits++
|
||
} else {
|
||
h.h0.AddZero()
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.code <<= 1
|
||
h.p1.codeBits++
|
||
} else {
|
||
h.h1.AddZero()
|
||
}
|
||
}
|
||
|
||
func (h *PatternHuff) AddOne() {
|
||
if h.p0 != nil {
|
||
h.p0.code <<= 1
|
||
h.p0.code++
|
||
h.p0.codeBits++
|
||
} else {
|
||
h.h0.AddOne()
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.code <<= 1
|
||
h.p1.code++
|
||
h.p1.codeBits++
|
||
} else {
|
||
h.h1.AddOne()
|
||
}
|
||
}
|
||
|
||
func (h *PatternHuff) SetDepth(depth int) {
|
||
if h.p0 != nil {
|
||
h.p0.depth = depth + 1
|
||
h.p0.uses = 0
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.depth = depth + 1
|
||
h.p1.uses = 0
|
||
}
|
||
if h.h0 != nil {
|
||
h.h0.SetDepth(depth + 1)
|
||
}
|
||
if h.h1 != nil {
|
||
h.h1.SetDepth(depth + 1)
|
||
}
|
||
}
|
||
|
||
// PatternHeap is priority queue of pattern for the purpose of building
|
||
// Huffman tree to determine efficient coding. Patterns with least usage
|
||
// have highest priority. We use a tie-breaker to make sure
|
||
// the resulting Huffman code is canonical
|
||
type PatternHeap []*PatternHuff
|
||
|
||
func (ph PatternHeap) Len() int {
|
||
return len(ph)
|
||
}
|
||
|
||
func (ph PatternHeap) Less(i, j int) bool {
|
||
if ph[i].uses == ph[j].uses {
|
||
return ph[i].tieBreaker < ph[j].tieBreaker
|
||
}
|
||
return ph[i].uses < ph[j].uses
|
||
}
|
||
|
||
func (ph *PatternHeap) Swap(i, j int) {
|
||
(*ph)[i], (*ph)[j] = (*ph)[j], (*ph)[i]
|
||
}
|
||
|
||
func (ph *PatternHeap) Push(x interface{}) {
|
||
*ph = append(*ph, x.(*PatternHuff))
|
||
}
|
||
|
||
func (ph *PatternHeap) Pop() interface{} {
|
||
old := *ph
|
||
n := len(old)
|
||
x := old[n-1]
|
||
*ph = old[0 : n-1]
|
||
return x
|
||
}
|
||
|
||
type Position struct {
|
||
uses uint64
|
||
pos uint64
|
||
code uint64
|
||
codeBits int
|
||
depth int // Depth of the position in the huffman tree (for encoding in the file)
|
||
}
|
||
|
||
type PositionHuff struct {
|
||
uses uint64
|
||
tieBreaker uint64
|
||
p0, p1 *Position
|
||
h0, h1 *PositionHuff
|
||
}
|
||
|
||
func (h *PositionHuff) AddZero() {
|
||
if h.p0 != nil {
|
||
h.p0.code <<= 1
|
||
h.p0.codeBits++
|
||
} else {
|
||
h.h0.AddZero()
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.code <<= 1
|
||
h.p1.codeBits++
|
||
} else {
|
||
h.h1.AddZero()
|
||
}
|
||
}
|
||
|
||
func (h *PositionHuff) AddOne() {
|
||
if h.p0 != nil {
|
||
h.p0.code <<= 1
|
||
h.p0.code++
|
||
h.p0.codeBits++
|
||
} else {
|
||
h.h0.AddOne()
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.code <<= 1
|
||
h.p1.code++
|
||
h.p1.codeBits++
|
||
} else {
|
||
h.h1.AddOne()
|
||
}
|
||
}
|
||
|
||
func (h *PositionHuff) SetDepth(depth int) {
|
||
if h.p0 != nil {
|
||
h.p0.depth = depth + 1
|
||
h.p0.uses = 0
|
||
}
|
||
if h.p1 != nil {
|
||
h.p1.depth = depth + 1
|
||
h.p1.uses = 0
|
||
}
|
||
if h.h0 != nil {
|
||
h.h0.SetDepth(depth + 1)
|
||
}
|
||
if h.h1 != nil {
|
||
h.h1.SetDepth(depth + 1)
|
||
}
|
||
}
|
||
|
||
type PositionList []*Position
|
||
|
||
func (pl PositionList) Len() int {
|
||
return len(pl)
|
||
}
|
||
|
||
func (pl PositionList) Less(i, j int) bool {
|
||
if pl[i].uses == pl[j].uses {
|
||
return bits.Reverse64(pl[i].code) < bits.Reverse64(pl[j].code)
|
||
}
|
||
return pl[i].uses < pl[j].uses
|
||
}
|
||
|
||
func (pl *PositionList) Swap(i, j int) {
|
||
(*pl)[i], (*pl)[j] = (*pl)[j], (*pl)[i]
|
||
}
|
||
|
||
type PositionHeap []*PositionHuff
|
||
|
||
func (ph PositionHeap) Len() int {
|
||
return len(ph)
|
||
}
|
||
|
||
func (ph PositionHeap) Less(i, j int) bool {
|
||
if ph[i].uses == ph[j].uses {
|
||
return ph[i].tieBreaker < ph[j].tieBreaker
|
||
}
|
||
return ph[i].uses < ph[j].uses
|
||
}
|
||
|
||
func (ph *PositionHeap) Swap(i, j int) {
|
||
(*ph)[i], (*ph)[j] = (*ph)[j], (*ph)[i]
|
||
}
|
||
|
||
func (ph *PositionHeap) Push(x interface{}) {
|
||
*ph = append(*ph, x.(*PositionHuff))
|
||
}
|
||
|
||
func (ph *PositionHeap) Pop() interface{} {
|
||
old := *ph
|
||
n := len(old)
|
||
x := old[n-1]
|
||
*ph = old[0 : n-1]
|
||
return x
|
||
}
|
||
|
||
type HuffmanCoder struct {
|
||
w *bufio.Writer
|
||
outputBits int
|
||
outputByte byte
|
||
}
|
||
|
||
func (hf *HuffmanCoder) encode(code uint64, codeBits int) error {
|
||
for codeBits > 0 {
|
||
var bitsUsed int
|
||
if hf.outputBits+codeBits > 8 {
|
||
bitsUsed = 8 - hf.outputBits
|
||
} else {
|
||
bitsUsed = codeBits
|
||
}
|
||
mask := (uint64(1) << bitsUsed) - 1
|
||
hf.outputByte |= byte((code & mask) << hf.outputBits)
|
||
code >>= bitsUsed
|
||
codeBits -= bitsUsed
|
||
hf.outputBits += bitsUsed
|
||
if hf.outputBits == 8 {
|
||
if e := hf.w.WriteByte(hf.outputByte); e != nil {
|
||
return e
|
||
}
|
||
hf.outputBits = 0
|
||
hf.outputByte = 0
|
||
}
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (hf *HuffmanCoder) flush() error {
|
||
if hf.outputBits > 0 {
|
||
if e := hf.w.WriteByte(hf.outputByte); e != nil {
|
||
return e
|
||
}
|
||
hf.outputBits = 0
|
||
hf.outputByte = 0
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// DynamicCell represents result of dynamic programming for certain starting position
|
||
type DynamicCell struct {
|
||
optimStart int
|
||
coverStart int
|
||
compression int
|
||
score uint64
|
||
patternIdx int // offset of the last element in the pattern slice
|
||
}
|
||
|
||
type Ring struct {
|
||
cells []DynamicCell
|
||
head, tail, count int
|
||
}
|
||
|
||
func NewRing() *Ring {
|
||
return &Ring{
|
||
cells: make([]DynamicCell, 16),
|
||
head: 0,
|
||
tail: 0,
|
||
count: 0,
|
||
}
|
||
}
|
||
|
||
func (r *Ring) Reset() {
|
||
r.count = 0
|
||
r.head = 0
|
||
r.tail = 0
|
||
}
|
||
|
||
func (r *Ring) ensureSize() {
|
||
if r.count < len(r.cells) {
|
||
return
|
||
}
|
||
newcells := make([]DynamicCell, r.count*2)
|
||
if r.tail > r.head {
|
||
copy(newcells, r.cells[r.head:r.tail])
|
||
} else {
|
||
n := copy(newcells, r.cells[r.head:])
|
||
copy(newcells[n:], r.cells[:r.tail])
|
||
}
|
||
r.head = 0
|
||
r.tail = r.count
|
||
r.cells = newcells
|
||
}
|
||
|
||
func (r *Ring) PushFront() *DynamicCell {
|
||
r.ensureSize()
|
||
if r.head == 0 {
|
||
r.head = len(r.cells)
|
||
}
|
||
r.head--
|
||
r.count++
|
||
return &r.cells[r.head]
|
||
}
|
||
|
||
func (r *Ring) PushBack() *DynamicCell {
|
||
r.ensureSize()
|
||
if r.tail == len(r.cells) {
|
||
r.tail = 0
|
||
}
|
||
result := &r.cells[r.tail]
|
||
r.tail++
|
||
r.count++
|
||
return result
|
||
}
|
||
|
||
func (r Ring) Len() int {
|
||
return r.count
|
||
}
|
||
|
||
func (r *Ring) Get(i int) *DynamicCell {
|
||
if i < 0 || i >= r.count {
|
||
return nil
|
||
}
|
||
return &r.cells[(r.head+i)&(len(r.cells)-1)]
|
||
}
|
||
|
||
// Truncate removes all items starting from i
|
||
func (r *Ring) Truncate(i int) {
|
||
r.count = i
|
||
r.tail = (r.head + i) & (len(r.cells) - 1)
|
||
}
|
||
|
||
func NewCompressorSequential(logPrefix, outputFile string, tmpDir string, minPatternScore uint64) (*CompressorSequential, error) {
|
||
c := &CompressorSequential{
|
||
minPatternScore: minPatternScore,
|
||
outputFile: outputFile,
|
||
tmpDir: tmpDir,
|
||
superstring: make([]byte, 0, superstringLimit), // Allocate enough, so we never need to resize
|
||
suffixarray: make([]int32, superstringLimit),
|
||
lcp: make([]int32, superstringLimit/2),
|
||
collectBuf: make([]byte, 8, 256),
|
||
ring: NewRing(),
|
||
patterns: make([]int, 0, 32),
|
||
uncovered: make([]int, 0, 32),
|
||
posMap: make(map[uint64]uint64),
|
||
}
|
||
var err error
|
||
if c.divsufsort, err = transform.NewDivSufSort(); err != nil {
|
||
return nil, err
|
||
}
|
||
if c.wordFile, err = ioutil.TempFile(c.tmpDir, "superstrings-"); err != nil {
|
||
return nil, err
|
||
}
|
||
c.wordW = bufio.NewWriterSize(c.wordFile, etl.BufIOSize)
|
||
c.collector = etl.NewCollector(logPrefix, tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize))
|
||
return c, nil
|
||
}
|
||
|
||
// AddWord needs to be called repeatedly to provide all the superstrings to compress
|
||
func (c *CompressorSequential) AddWord(word []byte) error {
|
||
c.wordsCount++
|
||
if len(word) == 0 {
|
||
c.emptyWordsCount++
|
||
}
|
||
if len(c.superstring)+2*len(word)+2 > superstringLimit {
|
||
// Adding this word would make superstring go over the limit
|
||
if err := c.processSuperstring(); err != nil {
|
||
return fmt.Errorf("buildDictNextWord: error processing superstring: %w", err)
|
||
}
|
||
}
|
||
for _, b := range word {
|
||
c.superstring = append(c.superstring, 1, b)
|
||
}
|
||
c.superstring = append(c.superstring, 0, 0)
|
||
n := binary.PutUvarint(c.numBuf[:], uint64(len(word)))
|
||
if _, err := c.wordW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
if len(word) > 0 {
|
||
if _, err := c.wordW.Write(word); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (c *CompressorSequential) Compress() error {
|
||
if c.wordW != nil {
|
||
if err := c.wordW.Flush(); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
if err := c.buildDictionary(); err != nil {
|
||
return err
|
||
}
|
||
if err := c.findMatches(); err != nil {
|
||
return err
|
||
}
|
||
if err := c.optimiseCodes(); err != nil {
|
||
return err
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (c *CompressorSequential) Close() {
|
||
c.collector.Close()
|
||
c.wordFile.Close()
|
||
c.interFile.Close()
|
||
}
|
||
|
||
func (c *CompressorSequential) findMatches() error {
|
||
// Build patricia tree out of the patterns in the dictionary, for further matching in individual superstrings
|
||
// Allocate temporary initial codes to the patterns so that patterns with higher scores get smaller code
|
||
// This helps reduce the size of intermediate compression
|
||
for i, p := range c.dictBuilder.items {
|
||
p.code = uint64(len(c.dictBuilder.items) - i - 1)
|
||
c.pt.Insert(p.word, p)
|
||
}
|
||
var err error
|
||
if c.interFile, err = ioutil.TempFile(c.tmpDir, "inter-compress-"); err != nil {
|
||
return err
|
||
}
|
||
c.interW = bufio.NewWriterSize(c.interFile, etl.BufIOSize)
|
||
if _, err := c.wordFile.Seek(0, 0); err != nil {
|
||
return err
|
||
}
|
||
defer os.Remove(c.wordFile.Name())
|
||
defer c.wordFile.Close()
|
||
r := bufio.NewReaderSize(c.wordFile, etl.BufIOSize)
|
||
var readBuf []byte
|
||
l, e := binary.ReadUvarint(r)
|
||
for ; e == nil; l, e = binary.ReadUvarint(r) {
|
||
c.posMap[l+1]++
|
||
c.posMap[0]++
|
||
if int(l) > len(readBuf) {
|
||
readBuf = make([]byte, l)
|
||
}
|
||
if _, e := io.ReadFull(r, readBuf[:l]); e != nil {
|
||
return e
|
||
}
|
||
word := readBuf[:l]
|
||
// Encode length of the word as var int for the intermediate compression
|
||
n := binary.PutUvarint(c.numBuf[:], uint64(len(word)))
|
||
if _, err := c.interW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
if len(word) > 0 {
|
||
matches := c.mf.FindLongestMatches(word)
|
||
if len(matches) == 0 {
|
||
n = binary.PutUvarint(c.numBuf[:], 0)
|
||
if _, err := c.interW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
if _, err := c.interW.Write(word); err != nil {
|
||
return err
|
||
}
|
||
continue
|
||
}
|
||
c.ring.Reset()
|
||
c.patterns = append(c.patterns[:0], 0, 0) // Sentinel entry - no meaning
|
||
lastF := matches[len(matches)-1]
|
||
for j := lastF.Start; j < lastF.End; j++ {
|
||
d := c.ring.PushBack()
|
||
d.optimStart = j + 1
|
||
d.coverStart = len(word)
|
||
d.compression = 0
|
||
d.patternIdx = 0
|
||
d.score = 0
|
||
}
|
||
// Starting from the last match
|
||
for i := len(matches); i > 0; i-- {
|
||
f := matches[i-1]
|
||
p := f.Val.(*Pattern)
|
||
firstCell := c.ring.Get(0)
|
||
maxCompression := firstCell.compression
|
||
maxScore := firstCell.score
|
||
maxCell := firstCell
|
||
var maxInclude bool
|
||
for e := 0; e < c.ring.Len(); e++ {
|
||
cell := c.ring.Get(e)
|
||
comp := cell.compression - 4
|
||
if cell.coverStart >= f.End {
|
||
comp += f.End - f.Start
|
||
} else {
|
||
comp += cell.coverStart - f.Start
|
||
}
|
||
score := cell.score + p.score
|
||
if comp > maxCompression || (comp == maxCompression && score > maxScore) {
|
||
maxCompression = comp
|
||
maxScore = score
|
||
maxInclude = true
|
||
maxCell = cell
|
||
} else if cell.optimStart > f.End {
|
||
c.ring.Truncate(e)
|
||
break
|
||
}
|
||
}
|
||
d := c.ring.PushFront()
|
||
d.optimStart = f.Start
|
||
d.score = maxScore
|
||
d.compression = maxCompression
|
||
if maxInclude {
|
||
d.coverStart = f.Start
|
||
d.patternIdx = len(c.patterns)
|
||
c.patterns = append(c.patterns, i-1, maxCell.patternIdx)
|
||
} else {
|
||
d.coverStart = maxCell.coverStart
|
||
d.patternIdx = maxCell.patternIdx
|
||
}
|
||
}
|
||
optimCell := c.ring.Get(0)
|
||
// Count number of patterns
|
||
var patternCount uint64
|
||
patternIdx := optimCell.patternIdx
|
||
for patternIdx != 0 {
|
||
patternCount++
|
||
patternIdx = c.patterns[patternIdx+1]
|
||
}
|
||
n = binary.PutUvarint(c.numBuf[:], patternCount)
|
||
if _, err := c.interW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
patternIdx = optimCell.patternIdx
|
||
lastStart := 0
|
||
var lastUncovered int
|
||
c.uncovered = c.uncovered[:0]
|
||
for patternIdx != 0 {
|
||
pattern := c.patterns[patternIdx]
|
||
p := matches[pattern].Val.(*Pattern)
|
||
if matches[pattern].Start > lastUncovered {
|
||
c.uncovered = append(c.uncovered, lastUncovered, matches[pattern].Start)
|
||
}
|
||
lastUncovered = matches[pattern].End
|
||
// Starting position
|
||
c.posMap[uint64(matches[pattern].Start-lastStart+1)]++
|
||
lastStart = matches[pattern].Start
|
||
n = binary.PutUvarint(c.numBuf[:], uint64(matches[pattern].Start))
|
||
if _, err := c.interW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
// Code
|
||
n = binary.PutUvarint(c.numBuf[:], p.code)
|
||
if _, err := c.interW.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
p.uses++
|
||
patternIdx = c.patterns[patternIdx+1]
|
||
}
|
||
if len(word) > lastUncovered {
|
||
c.uncovered = append(c.uncovered, lastUncovered, len(word))
|
||
}
|
||
// Add uncoded input
|
||
for i := 0; i < len(c.uncovered); i += 2 {
|
||
if _, err := c.interW.Write(word[c.uncovered[i]:c.uncovered[i+1]]); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if e != nil && !errors.Is(e, io.EOF) {
|
||
return e
|
||
}
|
||
if err = c.interW.Flush(); err != nil {
|
||
return err
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// optimises coding for patterns and positions
|
||
func (c *CompressorSequential) optimiseCodes() error {
|
||
if _, err := c.interFile.Seek(0, 0); err != nil {
|
||
return err
|
||
}
|
||
defer os.Remove(c.interFile.Name())
|
||
defer c.interFile.Close()
|
||
// Select patterns with non-zero use and sort them by increasing frequency of use (in preparation for building Huffman tree)
|
||
var patternList PatternList
|
||
for _, p := range c.dictBuilder.items {
|
||
if p.uses > 0 {
|
||
patternList = append(patternList, p)
|
||
}
|
||
}
|
||
sort.Sort(&patternList)
|
||
|
||
i := 0 // Will be going over the patternList
|
||
// Build Huffman tree for codes
|
||
var codeHeap PatternHeap
|
||
heap.Init(&codeHeap)
|
||
tieBreaker := uint64(0)
|
||
for codeHeap.Len()+(patternList.Len()-i) > 1 {
|
||
// New node
|
||
h := &PatternHuff{
|
||
tieBreaker: tieBreaker,
|
||
}
|
||
if codeHeap.Len() > 0 && (i >= patternList.Len() || codeHeap[0].uses < patternList[i].uses) {
|
||
// Take h0 from the heap
|
||
h.h0 = heap.Pop(&codeHeap).(*PatternHuff)
|
||
h.h0.AddZero()
|
||
h.uses += h.h0.uses
|
||
} else {
|
||
// Take p0 from the list
|
||
h.p0 = patternList[i]
|
||
h.p0.code = 0
|
||
h.p0.codeBits = 1
|
||
h.uses += h.p0.uses
|
||
i++
|
||
}
|
||
if codeHeap.Len() > 0 && (i >= patternList.Len() || codeHeap[0].uses < patternList[i].uses) {
|
||
// Take h1 from the heap
|
||
h.h1 = heap.Pop(&codeHeap).(*PatternHuff)
|
||
h.h1.AddOne()
|
||
h.uses += h.h1.uses
|
||
} else {
|
||
// Take p1 from the list
|
||
h.p1 = patternList[i]
|
||
h.p1.code = 1
|
||
h.p1.codeBits = 1
|
||
h.uses += h.p1.uses
|
||
i++
|
||
}
|
||
tieBreaker++
|
||
heap.Push(&codeHeap, h)
|
||
}
|
||
if codeHeap.Len() > 0 {
|
||
root := heap.Pop(&codeHeap).(*PatternHuff) // Root node of huffman tree
|
||
root.SetDepth(0)
|
||
}
|
||
// Calculate total size of the dictionary
|
||
var patternsSize uint64
|
||
for _, p := range patternList {
|
||
ns := binary.PutUvarint(c.numBuf[:], uint64(p.depth)) // Length of the word's depth
|
||
n := binary.PutUvarint(c.numBuf[:], uint64(len(p.word))) // Length of the word's length
|
||
patternsSize += uint64(ns + n + len(p.word))
|
||
}
|
||
// Start writing to result file
|
||
cf, err := os.Create(c.outputFile)
|
||
if err != nil {
|
||
return err
|
||
}
|
||
defer cf.Close()
|
||
defer cf.Sync()
|
||
cw := bufio.NewWriterSize(cf, etl.BufIOSize)
|
||
defer cw.Flush()
|
||
// 1-st, output amount of words and emptyWords in file
|
||
binary.BigEndian.PutUint64(c.numBuf[:], c.wordsCount)
|
||
if _, err = cw.Write(c.numBuf[:8]); err != nil {
|
||
return err
|
||
}
|
||
binary.BigEndian.PutUint64(c.numBuf[:], c.emptyWordsCount)
|
||
if _, err = cw.Write(c.numBuf[:8]); err != nil {
|
||
return err
|
||
}
|
||
// 2-nd, output dictionary size
|
||
binary.BigEndian.PutUint64(c.numBuf[:], patternsSize) // Dictionary size
|
||
if _, err = cw.Write(c.numBuf[:8]); err != nil {
|
||
return err
|
||
}
|
||
// 3-rd, write all the pattens, with their depths
|
||
sort.Sort(&patternList)
|
||
for _, p := range patternList {
|
||
ns := binary.PutUvarint(c.numBuf[:], uint64(p.depth))
|
||
if _, err = cw.Write(c.numBuf[:ns]); err != nil {
|
||
return err
|
||
}
|
||
n := binary.PutUvarint(c.numBuf[:], uint64(len(p.word)))
|
||
if _, err = cw.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
if _, err = cw.Write(p.word); err != nil {
|
||
return err
|
||
}
|
||
//fmt.Printf("[comp] depth=%d, code=[%b], pattern=[%x]\n", p.depth, p.code, p.word)
|
||
}
|
||
var positionList PositionList
|
||
pos2code := make(map[uint64]*Position)
|
||
for pos, uses := range c.posMap {
|
||
p := &Position{pos: pos, uses: uses, code: pos, codeBits: 0}
|
||
positionList = append(positionList, p)
|
||
pos2code[pos] = p
|
||
}
|
||
sort.Sort(&positionList)
|
||
i = 0 // Will be going over the positionList
|
||
// Build Huffman tree for codes
|
||
var posHeap PositionHeap
|
||
heap.Init(&posHeap)
|
||
tieBreaker = uint64(0)
|
||
for posHeap.Len()+(positionList.Len()-i) > 1 {
|
||
// New node
|
||
h := &PositionHuff{
|
||
tieBreaker: tieBreaker,
|
||
}
|
||
if posHeap.Len() > 0 && (i >= positionList.Len() || posHeap[0].uses < positionList[i].uses) {
|
||
// Take h0 from the heap
|
||
h.h0 = heap.Pop(&posHeap).(*PositionHuff)
|
||
h.h0.AddZero()
|
||
h.uses += h.h0.uses
|
||
} else {
|
||
// Take p0 from the list
|
||
h.p0 = positionList[i]
|
||
h.p0.code = 0
|
||
h.p0.codeBits = 1
|
||
h.uses += h.p0.uses
|
||
i++
|
||
}
|
||
if posHeap.Len() > 0 && (i >= positionList.Len() || posHeap[0].uses < positionList[i].uses) {
|
||
// Take h1 from the heap
|
||
h.h1 = heap.Pop(&posHeap).(*PositionHuff)
|
||
h.h1.AddOne()
|
||
h.uses += h.h1.uses
|
||
} else {
|
||
// Take p1 from the list
|
||
h.p1 = positionList[i]
|
||
h.p1.code = 1
|
||
h.p1.codeBits = 1
|
||
h.uses += h.p1.uses
|
||
i++
|
||
}
|
||
tieBreaker++
|
||
heap.Push(&posHeap, h)
|
||
}
|
||
if posHeap.Len() > 0 {
|
||
posRoot := heap.Pop(&posHeap).(*PositionHuff)
|
||
posRoot.SetDepth(0)
|
||
}
|
||
// Calculate the size of pos dictionary
|
||
var posSize uint64
|
||
for _, p := range positionList {
|
||
ns := binary.PutUvarint(c.numBuf[:], uint64(p.depth)) // Length of the position's depth
|
||
n := binary.PutUvarint(c.numBuf[:], p.pos)
|
||
posSize += uint64(ns + n)
|
||
}
|
||
// First, output dictionary size
|
||
binary.BigEndian.PutUint64(c.numBuf[:], posSize) // Dictionary size
|
||
if _, err = cw.Write(c.numBuf[:8]); err != nil {
|
||
return err
|
||
}
|
||
sort.Sort(&positionList)
|
||
// Write all the positions and their depths
|
||
for _, p := range positionList {
|
||
ns := binary.PutUvarint(c.numBuf[:], uint64(p.depth))
|
||
if _, err = cw.Write(c.numBuf[:ns]); err != nil {
|
||
return err
|
||
}
|
||
n := binary.PutUvarint(c.numBuf[:], p.pos)
|
||
if _, err = cw.Write(c.numBuf[:n]); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
r := bufio.NewReaderSize(c.interFile, etl.BufIOSize)
|
||
var hc HuffmanCoder
|
||
hc.w = cw
|
||
l, e := binary.ReadUvarint(r)
|
||
for ; e == nil; l, e = binary.ReadUvarint(r) {
|
||
posCode := pos2code[l+1]
|
||
if posCode != nil {
|
||
if e = hc.encode(posCode.code, posCode.codeBits); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
if l == 0 {
|
||
if e = hc.flush(); e != nil {
|
||
return e
|
||
}
|
||
} else {
|
||
var pNum uint64 // Number of patterns
|
||
if pNum, e = binary.ReadUvarint(r); e != nil {
|
||
return e
|
||
}
|
||
// Now reading patterns one by one
|
||
var lastPos uint64
|
||
var lastUncovered int
|
||
var uncoveredCount int
|
||
for i := 0; i < int(pNum); i++ {
|
||
var pos uint64 // Starting position for pattern
|
||
if pos, e = binary.ReadUvarint(r); e != nil {
|
||
return e
|
||
}
|
||
posCode = pos2code[pos-lastPos+1]
|
||
lastPos = pos
|
||
if posCode != nil {
|
||
if e = hc.encode(posCode.code, posCode.codeBits); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
var code uint64 // Code of the pattern
|
||
if code, e = binary.ReadUvarint(r); e != nil {
|
||
return e
|
||
}
|
||
patternCode := c.dictBuilder.items[len(c.dictBuilder.items)-1-int(code)]
|
||
if int(pos) > lastUncovered {
|
||
uncoveredCount += int(pos) - lastUncovered
|
||
}
|
||
lastUncovered = int(pos) + len(patternCode.word)
|
||
if e = hc.encode(patternCode.code, patternCode.codeBits); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
if int(l) > lastUncovered {
|
||
uncoveredCount += int(l) - lastUncovered
|
||
}
|
||
// Terminating position and flush
|
||
posCode = pos2code[0]
|
||
if posCode != nil {
|
||
if e = hc.encode(posCode.code, posCode.codeBits); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
if e = hc.flush(); e != nil {
|
||
return e
|
||
}
|
||
// Copy uncovered characters
|
||
if uncoveredCount > 0 {
|
||
if _, e = io.CopyN(cw, r, int64(uncoveredCount)); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if e != nil && !errors.Is(e, io.EOF) {
|
||
return e
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (c *CompressorSequential) buildDictionary() error {
|
||
if len(c.superstring) > 0 {
|
||
// Process any residual superstrings
|
||
if err := c.processSuperstring(); err != nil {
|
||
return fmt.Errorf("buildDictionary: error processing superstring: %w", err)
|
||
}
|
||
}
|
||
c.dictBuilder.Reset(maxDictPatterns)
|
||
if err := c.collector.Load(nil, "", c.dictBuilder.loadFunc, etl.TransformArgs{}); err != nil {
|
||
return err
|
||
}
|
||
c.dictBuilder.finish()
|
||
c.collector.Close()
|
||
// Sort dictionary inside the dictionary bilder in the order of increasing scores
|
||
sort.Sort(&c.dictBuilder)
|
||
return nil
|
||
}
|
||
|
||
func (c *CompressorSequential) processSuperstring() error {
|
||
c.divsufsort.ComputeSuffixArray(c.superstring, c.suffixarray[:len(c.superstring)])
|
||
// filter out suffixes that start with odd positions - we reuse the first half of sa.suffixarray for that
|
||
// because it won't be used after filtration
|
||
n := len(c.superstring) / 2
|
||
saFiltered := c.suffixarray[:n]
|
||
j := 0
|
||
for _, s := range c.suffixarray[:len(c.superstring)] {
|
||
if (s & 1) == 0 {
|
||
saFiltered[j] = s >> 1
|
||
j++
|
||
}
|
||
}
|
||
// Now create an inverted array - we reuse the second half of sa.suffixarray for that
|
||
saInverted := c.suffixarray[:n]
|
||
for i := 0; i < n; i++ {
|
||
saInverted[saFiltered[i]] = int32(i)
|
||
}
|
||
// Create LCP array (Kasai's algorithm)
|
||
var k int
|
||
// Process all suffixes one by one starting from
|
||
// first suffix in superstring
|
||
for i := 0; i < n; i++ {
|
||
/* If the current suffix is at n-1, then we don’t
|
||
have next substring to consider. So lcp is not
|
||
defined for this substring, we put zero. */
|
||
if saInverted[i] == int32(n-1) {
|
||
k = 0
|
||
continue
|
||
}
|
||
|
||
/* j contains index of the next substring to
|
||
be considered to compare with the present
|
||
substring, i.e., next string in suffix array */
|
||
j := int(saFiltered[saInverted[i]+1])
|
||
|
||
// Directly start matching from k'th index as
|
||
// at-least k-1 characters will match
|
||
for i+k < n && j+k < n && c.superstring[(i+k)*2] != 0 && c.superstring[(j+k)*2] != 0 && c.superstring[(i+k)*2+1] == c.superstring[(j+k)*2+1] {
|
||
k++
|
||
}
|
||
|
||
c.lcp[saInverted[i]] = int32(k) // lcp for the present suffix.
|
||
|
||
// Deleting the starting character from the string.
|
||
if k > 0 {
|
||
k--
|
||
}
|
||
}
|
||
// Walk over LCP array and compute the scores of the strings
|
||
b := saInverted
|
||
j = 0
|
||
for i := 0; i < n-1; i++ {
|
||
// Only when there is a drop in LCP value
|
||
if c.lcp[i+1] >= c.lcp[i] {
|
||
j = i
|
||
continue
|
||
}
|
||
for l := c.lcp[i]; l > c.lcp[i+1]; l-- {
|
||
if l < minPatternLen || l > maxPatternLen {
|
||
continue
|
||
}
|
||
// Go back
|
||
var isNew bool
|
||
for j > 0 && c.lcp[j-1] >= l {
|
||
j--
|
||
isNew = true
|
||
}
|
||
if !isNew {
|
||
break
|
||
}
|
||
window := i - j + 2
|
||
copy(b, saFiltered[j:i+2])
|
||
sort.Slice(b[:window], func(i1, i2 int) bool { return b[i1] < b[i2] })
|
||
repeats := 1
|
||
lastK := 0
|
||
for k := 1; k < window; k++ {
|
||
if b[k] >= b[lastK]+l {
|
||
repeats++
|
||
lastK = k
|
||
}
|
||
}
|
||
score := uint64(repeats * int(l-4))
|
||
if score >= c.minPatternScore {
|
||
// Dictionary key is the concatenation of the score and the dictionary word (to later aggregate the scores from multiple chunks)
|
||
c.collectBuf = c.collectBuf[:8]
|
||
for s := int32(0); s < l; s++ {
|
||
c.collectBuf = append(c.collectBuf, c.superstring[(saFiltered[i]+s)*2+1])
|
||
}
|
||
binary.BigEndian.PutUint64(c.collectBuf[:8], score)
|
||
if err := c.collector.Collect(c.collectBuf[8:], c.collectBuf[:8]); err != nil { // key will be copied by Collect function
|
||
return fmt.Errorf("collecting %x with score %d: %w", c.collectBuf[8:], score, err)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
c.superstring = c.superstring[:0]
|
||
return nil
|
||
}
|
||
|
||
type DictAggregator struct {
|
||
lastWord []byte
|
||
lastWordScore uint64
|
||
collector *etl.Collector
|
||
|
||
dist map[int]int
|
||
}
|
||
|
||
func (da *DictAggregator) processWord(word []byte, score uint64) error {
|
||
var scoreBuf [8]byte
|
||
binary.BigEndian.PutUint64(scoreBuf[:], score)
|
||
return da.collector.Collect(word, scoreBuf[:])
|
||
}
|
||
|
||
func (da *DictAggregator) Load(loadFunc etl.LoadFunc, args etl.TransformArgs) error {
|
||
defer da.collector.Close()
|
||
return da.collector.Load(nil, "", loadFunc, args)
|
||
}
|
||
|
||
func (da *DictAggregator) aggLoadFunc(k, v []byte, table etl.CurrentTableReader, next etl.LoadNextFunc) error {
|
||
if _, ok := da.dist[len(k)]; !ok {
|
||
da.dist[len(k)] = 0
|
||
}
|
||
da.dist[len(k)]++
|
||
|
||
score := binary.BigEndian.Uint64(v)
|
||
if bytes.Equal(k, da.lastWord) {
|
||
da.lastWordScore += score
|
||
} else {
|
||
if da.lastWord != nil {
|
||
if err := da.processWord(da.lastWord, da.lastWordScore); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
da.lastWord = append(da.lastWord[:0], k...)
|
||
da.lastWordScore = score
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (da *DictAggregator) finish() error {
|
||
if da.lastWord != nil {
|
||
return da.processWord(da.lastWord, da.lastWordScore)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
type CompressionRatio float64
|
||
|
||
func (r CompressionRatio) String() string { return fmt.Sprintf("%.2f", r) }
|
||
|
||
func Ratio(f1, f2 string) (CompressionRatio, error) {
|
||
s1, err := os.Stat(f1)
|
||
if err != nil {
|
||
return 0, err
|
||
}
|
||
s2, err := os.Stat(f2)
|
||
if err != nil {
|
||
return 0, err
|
||
}
|
||
return CompressionRatio(float64(s1.Size()) / float64(s2.Size())), nil
|
||
}
|
||
|
||
// DecompressedFile - .dat file format - simple format for temporary data store
|
||
type DecompressedFile struct {
|
||
filePath string
|
||
f *os.File
|
||
w *bufio.Writer
|
||
count uint64
|
||
buf []byte
|
||
}
|
||
|
||
func NewUncompressedFile(filePath string) (*DecompressedFile, error) {
|
||
f, err := os.Create(filePath)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
w := bufio.NewWriterSize(f, etl.BufIOSize)
|
||
return &DecompressedFile{filePath: filePath, f: f, w: w, buf: make([]byte, 128)}, nil
|
||
}
|
||
func (f *DecompressedFile) Close() {
|
||
f.w.Flush()
|
||
//f.f.Sync()
|
||
f.f.Close()
|
||
os.Remove(f.filePath)
|
||
}
|
||
func (f *DecompressedFile) Append(v []byte) error {
|
||
f.count++
|
||
// For compressed words, the length prefix is shifted to make lowest bit zero
|
||
n := binary.PutUvarint(f.buf, 2*uint64(len(v)))
|
||
if _, e := f.w.Write(f.buf[:n]); e != nil {
|
||
return e
|
||
}
|
||
if len(v) > 0 {
|
||
if _, e := f.w.Write(v); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
return nil
|
||
}
|
||
func (f *DecompressedFile) AppendUncompressed(v []byte) error {
|
||
f.count++
|
||
// For uncompressed words, the length prefix is shifted to make lowest bit one
|
||
n := binary.PutUvarint(f.buf, 2*uint64(len(v))+1)
|
||
if _, e := f.w.Write(f.buf[:n]); e != nil {
|
||
return e
|
||
}
|
||
if len(v) > 0 {
|
||
if _, e := f.w.Write(v); e != nil {
|
||
return e
|
||
}
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// ForEach - Read keys from the file and generate superstring (with extra byte 0x1 prepended to each character, and with 0x0 0x0 pair inserted between keys and values)
|
||
// We only consider values with length > 2, because smaller values are not compressible without going into bits
|
||
func (f *DecompressedFile) ForEach(walker func(v []byte, compressed bool) error) error {
|
||
_, err := f.f.Seek(0, 0)
|
||
if err != nil {
|
||
return err
|
||
}
|
||
r := bufio.NewReaderSize(f.f, etl.BufIOSize)
|
||
buf := make([]byte, 4096)
|
||
l, e := binary.ReadUvarint(r)
|
||
for ; e == nil; l, e = binary.ReadUvarint(r) {
|
||
// extract lowest bit of length prefix as "uncompressed" flag and shift to obtain correct length
|
||
compressed := (l & 1) == 0
|
||
l >>= 1
|
||
if len(buf) < int(l) {
|
||
buf = make([]byte, l)
|
||
}
|
||
if _, e = io.ReadFull(r, buf[:l]); e != nil {
|
||
return e
|
||
}
|
||
if err := walker(buf[:l], compressed); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
if e != nil && !errors.Is(e, io.EOF) {
|
||
return e
|
||
}
|
||
return nil
|
||
}
|