erigon-pulse/compress/decompress.go
ledgerwatch 77eb94b53e
Elias fano search and merge (#357)
* Elias fano search and merge

* Add first cut of search

* Iterator and test

* Changes in aggregator

* Elias fano bitmap

* Fix uncompress decompress

* Print

* Print

* No print

* Print

* Print

* Print

* Change to AppendBytes

* Print

* Fix NextUncompressed

* Remove print

* Fix history search

* Fix in history search

* More tracing

* More tracing

* Fix

* Print

* Print key

* More print

* Print

* No deletion for history records

* Remove print

* Fix

* Fix

* Fix test

* Fix lint

Co-authored-by: Alex Sharp <alexsharp@Alexs-MacBook-Pro.local>
Co-authored-by: Alexey Sharp <alexeysharp@Alexeys-iMac.local>
2022-03-13 22:46:17 +00:00

448 lines
13 KiB
Go

/*
Copyright 2021 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package compress
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"github.com/ledgerwatch/erigon-lib/mmap"
)
type huffmanNodePos struct {
zero *huffmanNodePos
one *huffmanNodePos
pos uint64
}
type huffmanNodePattern struct {
zero *huffmanNodePattern
one *huffmanNodePattern
pattern []byte
}
// Decompressor provides access to the superstrings in a file produced by a compressor
type Decompressor struct {
compressedFile string
f *os.File
mmapHandle1 []byte // mmap handle for unix (this is used to close mmap)
mmapHandle2 *[mmap.MaxMapSize]byte // mmap handle for windows (this is used to close mmap)
data []byte // slice of correct size for the decompressor to work with
dict *huffmanNodePattern
posDict *huffmanNodePos
wordsStart uint64 // Offset of whether the superstrings actually start
size int64
wordsCount, emptyWordsCount uint64
}
func NewDecompressor(compressedFile string) (*Decompressor, error) {
d := &Decompressor{
compressedFile: compressedFile,
}
var err error
d.f, err = os.Open(compressedFile)
if err != nil {
return nil, err
}
var stat os.FileInfo
if stat, err = d.f.Stat(); err != nil {
return nil, err
}
d.size = stat.Size()
if d.size < 40 {
return nil, fmt.Errorf("compressed file is too short: %d", d.size)
}
if d.mmapHandle1, d.mmapHandle2, err = mmap.Mmap(d.f, int(d.size)); err != nil {
return nil, err
}
d.data = d.mmapHandle1[:d.size]
d.wordsCount = binary.BigEndian.Uint64(d.data[:8])
d.emptyWordsCount = binary.BigEndian.Uint64(d.data[8:16])
dictSize := binary.BigEndian.Uint64(d.data[16:24])
rootOffset := binary.BigEndian.Uint64(d.data[24:32])
cutoff := binary.BigEndian.Uint64(d.data[32:40])
data := d.data[40 : 40+dictSize]
if dictSize > 0 {
d.dict = buildHuffmanPattern(data, rootOffset, cutoff)
}
pos := 40 + dictSize
dictSize = binary.BigEndian.Uint64(d.data[pos : pos+8])
rootOffset = binary.BigEndian.Uint64(d.data[pos+8 : pos+16])
cutoff = binary.BigEndian.Uint64(d.data[pos+16 : pos+24])
data = d.data[pos+24 : pos+24+dictSize]
if dictSize > 0 {
d.posDict = buildHuffmanPos(data, rootOffset, cutoff)
}
d.wordsStart = pos + 24 + dictSize
return d, nil
}
func buildHuffmanPos(data []byte, offset uint64, cutoff uint64) *huffmanNodePos {
if offset < cutoff {
pos, _ := binary.Uvarint(data[offset:])
return &huffmanNodePos{pos: pos}
}
offsetZero, n := binary.Uvarint(data[offset:])
offsetOne, _ := binary.Uvarint(data[offset+uint64(n):])
return &huffmanNodePos{zero: buildHuffmanPos(data, offsetZero, cutoff), one: buildHuffmanPos(data, offsetOne, cutoff)}
}
func buildHuffmanPattern(data []byte, offset uint64, cutoff uint64) *huffmanNodePattern {
if offset < cutoff {
l, n := binary.Uvarint(data[offset:])
return &huffmanNodePattern{pattern: data[offset+uint64(n) : offset+uint64(n)+l]}
}
offsetZero, n := binary.Uvarint(data[offset:])
offsetOne, _ := binary.Uvarint(data[offset+uint64(n):])
return &huffmanNodePattern{zero: buildHuffmanPattern(data, offsetZero, cutoff), one: buildHuffmanPattern(data, offsetOne, cutoff)}
}
func (d *Decompressor) Size() int64 {
return d.size
}
func (d *Decompressor) Close() error {
if err := mmap.Munmap(d.mmapHandle1, d.mmapHandle2); err != nil {
return err
}
if err := d.f.Close(); err != nil {
return err
}
return nil
}
func (d *Decompressor) FilePath() string { return d.compressedFile }
//WithReadAhead - Expect read in sequential order. (Hence, pages in the given range can be aggressively read ahead, and may be freed soon after they are accessed.)
func (d *Decompressor) WithReadAhead(f func() error) error {
_ = mmap.MadviseSequential(d.mmapHandle1)
defer mmap.MadviseRandom(d.mmapHandle1)
return f()
}
// Getter represent "reader" or "interator" that can move accross the data of the decompressor
// The full state of the getter can be captured by saving dataP, b, and mask values.
type Getter struct {
data []byte
dataP uint64
patternDict *huffmanNodePattern
posDict *huffmanNodePos
b byte
mask byte
fName string
}
func (g *Getter) nextPos(clean bool) uint64 {
if clean {
g.mask = 0
}
node := g.posDict
if node.zero == nil && node.one == nil {
return node.pos
}
b := g.b
mask := g.mask
dataP := g.dataP
for node.zero != nil || node.one != nil {
if mask == 0 {
mask = 1
b = g.data[dataP]
dataP++
}
if b&mask == 0 {
node = node.zero
} else {
node = node.one
}
mask <<= 1
}
g.b = b
g.mask = mask
g.dataP = dataP
return node.pos
}
func (g *Getter) nextPattern() []byte {
node := g.patternDict
if node.zero == nil && node.one == nil {
return node.pattern
}
b := g.b
mask := g.mask
dataP := g.dataP
for node.zero != nil || node.one != nil {
if mask == 0 {
mask = 1
b = g.data[dataP]
dataP++
}
if b&mask == 0 {
node = node.zero
} else {
node = node.one
}
mask <<= 1
}
g.b = b
g.mask = mask
g.dataP = dataP
return node.pattern
}
func (d *Decompressor) Count() int { return int(d.wordsCount) }
func (d *Decompressor) EmptyWordsCount() int { return int(d.emptyWordsCount) }
// MakeGetter creates an object that can be used to access superstrings in the decompressor's file
// Getter is not thread-safe, but there can be multiple getters used simultaneously and concurrently
// for the same decompressor
func (d *Decompressor) MakeGetter() *Getter {
return &Getter{patternDict: d.dict, posDict: d.posDict, data: d.data[d.wordsStart:], fName: d.compressedFile}
}
func (g *Getter) Reset(offset uint64) {
g.dataP = offset
g.mask = 0
g.b = 0
}
func (g *Getter) HasNext() bool {
return g.dataP < uint64(len(g.data))
}
// Next extracts a compressed word from current offset in the file
// and appends it to the given buf, returning the result of appending
// After extracting next word, it moves to the beginning of the next one
func (g *Getter) Next(buf []byte) ([]byte, uint64) {
savePos := g.dataP
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
if l == 0 {
return buf, g.dataP
}
bufPos := len(buf) // Tracking position in buf where to insert part of the word
lastUncovered := len(buf)
if len(buf)+int(l) > cap(buf) {
newBuf := make([]byte, len(buf)+int(l))
copy(newBuf, buf)
buf = newBuf
} else {
// Expand buffer
buf = buf[:len(buf)+int(l)]
}
// Loop below fills in the patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
copy(buf[bufPos:], g.nextPattern())
}
postLoopPos := g.dataP
g.dataP = savePos
g.nextPos(true /* clean */) // Reset the state of huffman reader
bufPos = lastUncovered // Restore to the beginning of buf
// Loop below fills the data which is not in the patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1 // Positions where to insert patterns are encoded relative to one another
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
copy(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(l) > lastUncovered {
dif := l - uint64(lastUncovered)
copy(buf[lastUncovered:l], g.data[postLoopPos:postLoopPos+dif])
postLoopPos += dif
}
g.dataP = postLoopPos
return buf, postLoopPos
}
func (g *Getter) NextUncompressed() ([]byte, uint64) {
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
if l == 0 {
return g.data[g.dataP:g.dataP], g.dataP
}
g.nextPos(false)
pos := g.dataP
g.dataP += l
return g.data[pos:g.dataP], g.dataP
}
// Skip moves offset to the next word and returns the new offset.
func (g *Getter) Skip() uint64 {
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
if l == 0 {
return g.dataP
}
wordLen := int(l)
var add uint64
var bufPos int
var lastUncovered int
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if wordLen < bufPos {
panic(fmt.Sprintf("likely .idx is invalid: %s", g.fName))
}
if bufPos > lastUncovered {
add += uint64(bufPos - lastUncovered)
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(l) > lastUncovered {
add += l - uint64(lastUncovered)
}
// Uncovered characters
g.dataP += add
return g.dataP
}
// Match returns true and next offset if the word at current offset fully matches the buf
// returns false and current offset otherwise.
func (g *Getter) Match(buf []byte) (bool, uint64) {
savePos := g.dataP
l := g.nextPos(true)
l-- // because when create huffman tree we do ++ , because 0 is terminator
lenBuf := len(buf)
if l == 0 {
if lenBuf != 0 {
g.dataP = savePos
}
return lenBuf == 0, g.dataP
}
var bufPos int
// In the first pass, we only check patterns
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
if lenBuf < bufPos+len(pattern) || !bytes.Equal(buf[bufPos:bufPos+len(pattern)], pattern) {
g.dataP = savePos
return false, savePos
}
}
postLoopPos := g.dataP
g.dataP = savePos
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0; pos = g.nextPos(false) {
bufPos += int(pos) - 1
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
if lenBuf < bufPos || !bytes.Equal(buf[lastUncovered:bufPos], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP = savePos
return false, savePos
}
postLoopPos += dif
}
lastUncovered = bufPos + len(g.nextPattern())
}
if int(l) > lastUncovered {
dif := l - uint64(lastUncovered)
if lenBuf < int(l) || !bytes.Equal(buf[lastUncovered:l], g.data[postLoopPos:postLoopPos+dif]) {
g.dataP = savePos
return false, savePos
}
postLoopPos += dif
}
if lenBuf != int(l) {
g.dataP = savePos
return false, savePos
}
g.dataP = postLoopPos
return true, postLoopPos
}
// MatchPrefix only checks if the word at the current offset has a buf prefix. Does not move offset to the next word.
func (g *Getter) MatchPrefix(buf []byte) bool {
savePos := g.dataP
defer func() {
g.dataP = savePos
}()
l := g.nextPos(true /* clean */)
l-- // because when create huffman tree we do ++ , because 0 is terminator
lenBuf := len(buf)
if l == 0 {
if lenBuf != 0 {
g.dataP = savePos
}
return lenBuf == 0
}
var bufPos int
// In the first pass, we only check patterns
// Only run this loop as far as the prefix goes, there is no need to check further
for pos := g.nextPos(false /* clean */); pos != 0 && bufPos < lenBuf; pos = g.nextPos(false) {
bufPos += int(pos) - 1
pattern := g.nextPattern()
var comparisonLen int
if lenBuf < bufPos+len(pattern) {
comparisonLen = lenBuf - bufPos
} else {
comparisonLen = len(pattern)
}
if !bytes.Equal(buf[bufPos:bufPos+comparisonLen], pattern[:comparisonLen]) {
return false
}
}
postLoopPos := g.dataP
g.dataP = savePos
g.nextPos(true /* clean */) // Reset the state of huffman decoder
// Second pass - we check spaces not covered by the patterns
var lastUncovered int
bufPos = 0
for pos := g.nextPos(false /* clean */); pos != 0 && lastUncovered < lenBuf; pos = g.nextPos(false) {
bufPos += int(pos) - 1
patternLen := len(g.nextPattern())
if bufPos > lastUncovered {
dif := uint64(bufPos - lastUncovered)
var comparisonLen int
if lenBuf < lastUncovered+int(dif) {
comparisonLen = lenBuf - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(buf[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
postLoopPos += dif
}
lastUncovered = bufPos + patternLen
}
if lenBuf > lastUncovered && int(l) > lastUncovered {
dif := l - uint64(lastUncovered)
var comparisonLen int
if lenBuf < int(l) {
comparisonLen = lenBuf - lastUncovered
} else {
comparisonLen = int(dif)
}
if !bytes.Equal(buf[lastUncovered:lastUncovered+comparisonLen], g.data[postLoopPos:postLoopPos+uint64(comparisonLen)]) {
return false
}
}
return true
}