erigon-pulse/core/forkid/forkid.go
2021-07-29 17:23:23 +07:00

245 lines
8.9 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
package forkid
import (
"encoding/binary"
"errors"
"hash/crc32"
"math"
"math/big"
"reflect"
"sort"
"strings"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/params"
"github.com/ledgerwatch/log/v3"
)
var (
// ErrRemoteStale is returned by the validator if a remote fork checksum is a
// subset of our already applied forks, but the announced next fork block is
// not on our already passed chain.
ErrRemoteStale = errors.New("remote needs update")
// ErrLocalIncompatibleOrStale is returned by the validator if a remote fork
// checksum does not match any local checksum variation, signalling that the
// two chains have diverged in the past at some point (possibly at genesis).
ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update")
)
// ID is a fork identifier as defined by EIP-2124.
type ID struct {
Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers
Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known
}
// Filter is a fork id filter to validate a remotely advertised ID.
type Filter func(id ID) error
// NewID calculates the Ethereum fork ID from the chain config, genesis hash, and head.
func NewID(config *params.ChainConfig, genesis common.Hash, head uint64) ID {
return NewIDFromForks(GatherForks(config), genesis, head)
}
func NewIDFromForks(forks []uint64, genesis common.Hash, head uint64) ID {
// Calculate the starting checksum from the genesis hash
hash := crc32.ChecksumIEEE(genesis[:])
// Calculate the current fork checksum and the next fork block
var next uint64
for _, fork := range forks {
if fork <= head {
// Fork already passed, checksum the previous hash and the fork number
hash = checksumUpdate(hash, fork)
continue
}
next = fork
break
}
return ID{Hash: checksumToBytes(hash), Next: next}
}
// NewFilter creates a filter that returns if a fork ID should be rejected or notI
// based on the local chain's status.
func NewFilter(config *params.ChainConfig, genesis common.Hash, head func() uint64) Filter {
forks := GatherForks(config)
return newFilter(
forks,
genesis,
head,
)
}
func NewFilterFromForks(forks []uint64, genesis common.Hash, headNumber uint64) Filter {
head := func() uint64 { return headNumber }
return newFilter(forks, genesis, head)
}
// NewStaticFilter creates a filter at block zero.
func NewStaticFilter(config *params.ChainConfig, genesis common.Hash) Filter {
head := func() uint64 { return 0 }
forks := GatherForks(config)
return newFilter(forks, genesis, head)
}
// newFilter is the internal version of NewFilter, taking closures as its arguments
// instead of a chain. The reason is to allow testing it without having to simulate
// an entire blockchain.
func newFilter(forks []uint64, genesis common.Hash, headfn func() uint64) Filter {
// Calculate the all the valid fork hash and fork next combos
var (
sums = make([][4]byte, len(forks)+1) // 0th is the genesis
)
hash := crc32.ChecksumIEEE(genesis[:])
sums[0] = checksumToBytes(hash)
for i, fork := range forks {
hash = checksumUpdate(hash, fork)
sums[i+1] = checksumToBytes(hash)
}
// Add two sentries to simplify the fork checks and don't require special
// casing the last one.
forks = append(forks, math.MaxUint64) // Last fork will never be passed
// Create a validator that will filter out incompatible chains
return func(id ID) error {
if genesis == params.SokolGenesisHash {
return nil
}
// Run the fork checksum validation ruleset:
// 1. If local and remote FORK_CSUM matches, compare local head to FORK_NEXT.
// The two nodes are in the same fork state currently. They might know
// of differing future forks, but that's not relevant until the fork
// triggers (might be postponed, nodes might be updated to match).
// 1a. A remotely announced but remotely not passed block is already passed
// locally, disconnect, since the chains are incompatible.
// 1b. No remotely announced fork; or not yet passed locally, connect.
// 2. If the remote FORK_CSUM is a subset of the local past forks and the
// remote FORK_NEXT matches with the locally following fork block number,
// connect.
// Remote node is currently syncing. It might eventually diverge from
// us, but at this current point in time we don't have enough information.
// 3. If the remote FORK_CSUM is a superset of the local past forks and can
// be completed with locally known future forks, connect.
// Local node is currently syncing. It might eventually diverge from
// the remote, but at this current point in time we don't have enough
// information.
// 4. Reject in all other cases.
head := headfn()
for i, fork := range forks {
// If our head is beyond this fork, continue to the next (we have a dummy
// fork of maxuint64 as the last item to always fail this check eventually).
if head > fork {
continue
}
// Found the first unpassed fork block, check if our current state matches
// the remote checksum (rule #1).
if sums[i] == id.Hash {
// Fork checksum matched, check if a remote future fork block already passed
// locally without the local node being aware of it (rule #1a).
if id.Next > 0 && head >= id.Next {
return ErrLocalIncompatibleOrStale
}
// Haven't passed locally a remote-only fork, accept the connection (rule #1b).
return nil
}
// The local and remote nodes are in different forks currently, check if the
// remote checksum is a subset of our local forks (rule #2).
for j := 0; j < i; j++ {
if sums[j] == id.Hash {
// Remote checksum is a subset, validate based on the announced next fork
if forks[j] != id.Next {
return ErrRemoteStale
}
return nil
}
}
// Remote chain is not a subset of our local one, check if it's a superset by
// any chance, signalling that we're simply out of sync (rule #3).
for j := i + 1; j < len(sums); j++ {
if sums[j] == id.Hash {
// Yay, remote checksum is a superset, ignore upcoming forks
return nil
}
}
// No exact, subset or superset match. We are on differing chains, reject.
return ErrLocalIncompatibleOrStale
}
log.Error("Impossible fork ID validation", "id", id)
return nil // Something's very wrong, accept rather than reject
}
}
// checksumUpdate calculates the next IEEE CRC32 checksum based on the previous
// one and a fork block number (equivalent to CRC32(original-blob || fork)).
func checksumUpdate(hash uint32, fork uint64) uint32 {
var blob [8]byte
binary.BigEndian.PutUint64(blob[:], fork)
return crc32.Update(hash, crc32.IEEETable, blob[:])
}
// checksumToBytes converts a uint32 checksum into a [4]byte array.
func checksumToBytes(hash uint32) [4]byte {
var blob [4]byte
binary.BigEndian.PutUint32(blob[:], hash)
return blob
}
// GatherForks gathers all the known forks and creates a sorted list out of them.
func GatherForks(config *params.ChainConfig) []uint64 {
if config.ChainID.Uint64() == 77 {
return []uint64{6464300, 7026400, 12095200, 21050600}
}
// Gather all the fork block numbers via reflection
kind := reflect.TypeOf(params.ChainConfig{})
conf := reflect.ValueOf(config).Elem()
forks := make(map[uint64]struct{})
for i := 0; i < kind.NumField(); i++ {
// Fetch the next field and skip non-fork rules
field := kind.Field(i)
if !strings.HasSuffix(field.Name, "Block") {
continue
}
if field.Type != reflect.TypeOf(new(big.Int)) {
continue
}
// Extract the fork rule block number and aggregate it
rule := conf.Field(i).Interface().(*big.Int)
if rule != nil {
forks[rule.Uint64()] = struct{}{}
}
}
// Sort the fork block numbers to permit chronological XOR
forkBlocks := make([]uint64, 0, len(forks))
for num := range forks {
forkBlocks = append(forkBlocks, num)
}
sort.SliceStable(forkBlocks, func(i, j int) bool {
return forkBlocks[i] < forkBlocks[j]
})
// Skip any forks in block 0, that's the genesis ruleset
if len(forkBlocks) > 0 && forkBlocks[0] == 0 {
forkBlocks = forkBlocks[1:]
}
return forkBlocks
}