mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-26 05:27:19 +00:00
adf52465e3
Useful for minimizing merge conflicts when rebasing new geth
247 lines
8.6 KiB
Go
247 lines
8.6 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty off
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
// Experimental code for separating data and structural information
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"sort"
|
|
"testing"
|
|
|
|
"github.com/ledgerwatch/turbo-geth/common"
|
|
"github.com/ledgerwatch/turbo-geth/crypto"
|
|
"github.com/ledgerwatch/turbo-geth/turbo/rlphacks"
|
|
)
|
|
|
|
func TestV2HashBuilding(t *testing.T) {
|
|
var keys []string
|
|
for b := uint32(0); b < 100000; b++ {
|
|
var preimage [4]byte
|
|
binary.BigEndian.PutUint32(preimage[:], b)
|
|
key := crypto.Keccak256(preimage[:])[:8]
|
|
keys = append(keys, string(key))
|
|
}
|
|
sort.Strings(keys)
|
|
for i, key := range keys {
|
|
if i > 0 && keys[i-1] == key {
|
|
fmt.Printf("Duplicate!\n")
|
|
}
|
|
}
|
|
tr := New(common.Hash{})
|
|
valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
|
|
valueShort := []byte("VAL")
|
|
for i, key := range keys {
|
|
if i%2 == 0 {
|
|
tr.Update([]byte(key), valueNode(valueLong))
|
|
} else {
|
|
tr.Update([]byte(key), valueNode(valueShort))
|
|
}
|
|
}
|
|
trieHash := tr.Hash()
|
|
|
|
hb := NewHashBuilder(false)
|
|
var succ bytes.Buffer
|
|
var curr bytes.Buffer
|
|
var valueTape bytes.Buffer
|
|
var groups []uint16
|
|
for i, key := range keys {
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
keyBytes := []byte(key)
|
|
for _, b := range keyBytes {
|
|
succ.WriteByte(b / 16)
|
|
succ.WriteByte(b % 16)
|
|
}
|
|
succ.WriteByte(16)
|
|
if curr.Len() > 0 {
|
|
var err error
|
|
groups, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false)
|
|
if err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
}
|
|
valueTape.Reset()
|
|
if i%2 == 0 {
|
|
valueTape.Write(valueLong)
|
|
} else {
|
|
valueTape.Write(valueShort)
|
|
}
|
|
}
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
if _, err := GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
builtHash := hb.rootHash()
|
|
if trieHash != builtHash {
|
|
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
|
|
}
|
|
}
|
|
|
|
func TestV2Resolution(t *testing.T) {
|
|
var keys []string
|
|
for b := uint32(0); b < 100000; b++ {
|
|
var preimage [4]byte
|
|
binary.BigEndian.PutUint32(preimage[:], b)
|
|
key := crypto.Keccak256(preimage[:])[:8]
|
|
keys = append(keys, string(key))
|
|
}
|
|
sort.Strings(keys)
|
|
tr := New(common.Hash{})
|
|
value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
|
|
for _, key := range keys {
|
|
tr.Update([]byte(key), valueNode(value))
|
|
}
|
|
trieHash := tr.Hash()
|
|
|
|
// Choose some keys to be resolved
|
|
var rl RetainList
|
|
// First, existing keys
|
|
for i := 0; i < 1000; i += 200 {
|
|
rl.AddKey([]byte(keys[i]))
|
|
}
|
|
// Next, some non-exsiting keys
|
|
for i := 0; i < 1000; i++ {
|
|
rl.AddKey(crypto.Keccak256([]byte(keys[i]))[:8])
|
|
}
|
|
|
|
hb := NewHashBuilder(false)
|
|
var succ bytes.Buffer
|
|
var curr bytes.Buffer
|
|
var valueTape bytes.Buffer
|
|
var groups []uint16
|
|
for _, key := range keys {
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
keyBytes := []byte(key)
|
|
for _, b := range keyBytes {
|
|
succ.WriteByte(b / 16)
|
|
succ.WriteByte(b % 16)
|
|
}
|
|
succ.WriteByte(16)
|
|
if curr.Len() > 0 {
|
|
var err error
|
|
groups, err = GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false)
|
|
if err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
}
|
|
valueTape.Reset()
|
|
valueTape.Write(value)
|
|
}
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
if _, err := GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
tr1 := New(common.Hash{})
|
|
tr1.root = hb.root()
|
|
builtHash := hb.rootHash()
|
|
if trieHash != builtHash {
|
|
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
|
|
}
|
|
// Check the availability of the resolved keys
|
|
for _, hex := range rl.hexes {
|
|
key := hexToKeybytes(hex)
|
|
_, found := tr1.Get(key)
|
|
if !found {
|
|
t.Errorf("Key %x was not resolved", hex)
|
|
}
|
|
}
|
|
}
|
|
|
|
// In this test, we try to combine both accounts and their storage items in the single
|
|
// hash builder by tricking the GenStructStep slightly.
|
|
// For storage items, we will be using the keys which are concatenation of the contract address hash,
|
|
// incarnation encoding, and the storage location hash.
|
|
// If we just allow it to be processed natually, then at the end of the processing of all storage
|
|
// items, we would have entension node which branches off at some point, but includes incarnation encoding
|
|
// in it, which we do not want. To cut it off, we will use the "trick". When we give the last
|
|
// storage item to the GenStructStep, instead of setting `succ` to the empty slice, indicating that
|
|
// nothing follows, we will set `succ` to a key which is the concatenation of the address hash,
|
|
// incarnation encoding, except that the last nibble of the incoding is arbitrarily modified
|
|
// This will cause the correct extension node to form.
|
|
// In order to prevent the branch node on top of the extension node, we will need to manipulate
|
|
// the `groups` array and truncate it to the level of the accounts
|
|
func TestEmbeddedStorage(t *testing.T) {
|
|
var accountAddress = common.Address{3, 4, 5, 6}
|
|
addrHash := crypto.Keccak256(accountAddress[:])
|
|
incarnation := make([]byte, 8)
|
|
binary.BigEndian.PutUint64(incarnation, uint64(2))
|
|
var location1 = common.Hash{1}
|
|
locationKey1 := append(append([]byte{}, addrHash...), crypto.Keccak256(location1[:])...)
|
|
var location2 = common.Hash{2}
|
|
locationKey2 := append(append([]byte{}, addrHash...), crypto.Keccak256(location2[:])...)
|
|
var location3 = common.Hash{3}
|
|
locationKey3 := append(append([]byte{}, addrHash...), crypto.Keccak256(location3[:])...)
|
|
var keys = []string{string(locationKey1), string(locationKey2), string(locationKey3)}
|
|
sort.Strings(keys)
|
|
tr := New(common.Hash{})
|
|
valueShort := []byte("VAL")
|
|
for _, key := range keys {
|
|
tr.Update([]byte(key)[common.HashLength:], valueNode(valueShort))
|
|
}
|
|
trieHash := tr.Hash()
|
|
|
|
hb := NewHashBuilder(true)
|
|
var succ bytes.Buffer
|
|
var curr bytes.Buffer
|
|
var groups []uint16
|
|
var err error
|
|
for _, key := range keys {
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
keyBytes := []byte(key)
|
|
for _, b := range keyBytes {
|
|
succ.WriteByte(b / 16)
|
|
succ.WriteByte(b % 16)
|
|
}
|
|
succ.WriteByte(16)
|
|
if curr.Len() > 0 {
|
|
groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false)
|
|
if err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
}
|
|
}
|
|
curr.Reset()
|
|
curr.Write(succ.Bytes())
|
|
succ.Reset()
|
|
// Produce the key which is specially modified version of `curr` (only different in the last nibble)
|
|
cutoff := 2 * common.HashLength
|
|
succ.Write(curr.Bytes()[:cutoff-1])
|
|
succ.WriteByte(curr.Bytes()[cutoff-1] + 1)
|
|
if groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false); err != nil {
|
|
t.Errorf("Could not execute step of structGen algorithm: %v", err)
|
|
}
|
|
builtHash := hb.rootHash()
|
|
if trieHash != builtHash {
|
|
fmt.Printf("Trie built: %s\n", hb.root().fstring(""))
|
|
fmt.Printf("Trie expected: %s\n", tr.root.fstring(""))
|
|
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
|
|
}
|
|
fmt.Printf("groups: %d\n", len(groups))
|
|
}
|