mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-06 19:12:19 +00:00
4e9b378a5d
This addresses the last known deficiency of the eth_getProof implementation. The previous code would return an error in the event that the element was not found in the trie. EIP-1186 allows for 'negative' proofs where a proof demonstrates that an element cannot be in the trie, so this commit updates the logic to support that case. Co-authored-by: Jason Yellick <jason@enya.ai>
483 lines
16 KiB
Go
483 lines
16 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty off
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/holiman/uint256"
|
|
libcommon "github.com/ledgerwatch/erigon-lib/common"
|
|
|
|
"github.com/ledgerwatch/erigon/turbo/rlphacks"
|
|
)
|
|
|
|
// Experimental code for separating data and structural information
|
|
// Each function corresponds to an opcode
|
|
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
|
|
type structInfoReceiver interface {
|
|
leaf(length int, keyHex []byte, val rlphacks.RlpSerializable) error
|
|
leafHash(length int, keyHex []byte, val rlphacks.RlpSerializable) error
|
|
accountLeaf(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32, codeSize int) error
|
|
accountLeafHash(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32) error
|
|
extension(key []byte) error
|
|
extensionHash(key []byte) error
|
|
branch(set uint16) error
|
|
branchHash(set uint16) error
|
|
hash(hash []byte) error
|
|
topHash() []byte
|
|
topHashes(prefix []byte, branches, children uint16) []byte
|
|
printTopHashes(prefix []byte, branches, children uint16)
|
|
setProofElement(pe *proofElement)
|
|
}
|
|
|
|
// hashCollector gets called whenever there might be a need to create intermediate hash record
|
|
type HashCollector func(keyHex []byte, hash []byte) error
|
|
type StorageHashCollector func(accWithInc []byte, keyHex []byte, hash []byte) error
|
|
|
|
type HashCollector2 func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error
|
|
type StorageHashCollector2 func(accWithInc []byte, keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error
|
|
|
|
func calcPrecLen(groups []uint16) int {
|
|
if len(groups) == 0 {
|
|
return 0
|
|
}
|
|
return len(groups) - 1
|
|
}
|
|
|
|
type GenStructStepData interface {
|
|
GenStructStepData()
|
|
}
|
|
|
|
type GenStructStepAccountData struct {
|
|
FieldSet uint32
|
|
Balance uint256.Int
|
|
Nonce uint64
|
|
Incarnation uint64
|
|
}
|
|
|
|
func (GenStructStepAccountData) GenStructStepData() {}
|
|
|
|
type GenStructStepLeafData struct {
|
|
Value rlphacks.RlpSerializable
|
|
}
|
|
|
|
func (GenStructStepLeafData) GenStructStepData() {}
|
|
|
|
type GenStructStepHashData struct {
|
|
Hash libcommon.Hash
|
|
HasTree bool
|
|
}
|
|
|
|
func (GenStructStepHashData) GenStructStepData() {}
|
|
|
|
// GenStructStep is one step of the algorithm that generates the structural information based on the sequence of keys.
|
|
// `retain` parameter is the function that, called for a certain prefix, determines whether the trie node for that prefix needs to be
|
|
// compressed into just hash (if `false` is returned), or constructed (if `true` is returned). Usually the `retain` function is
|
|
// implemented in such a way to guarantee that certain keys are always accessible in the resulting trie (see RetainList.Retain function).
|
|
// `buildExtensions` is set to true if the algorithm's step is invoked recursively, i.e. not after a freshly provided leaf or hash
|
|
// `curr`, `succ` are two full keys or prefixes that are currently visible to the algorithm. By comparing these, the algorithm
|
|
// makes decisions about the local structure, i.e. the presence of the prefix groups.
|
|
// `e` parameter is the trie builder, which uses the structure information to assemble trie on the stack and compute its hash.
|
|
// `h` parameter is the hash collector, which is notified whenever branch node is constructed.
|
|
// `data` parameter specified if a hash or a binary string or an account should be emitted.
|
|
// `groups` parameter is the map of the stack. each element of the `groups` slice is a bitmask, one bit per element currently on the stack. Meaning - which children of given prefix have dbutils.HashedAccount records
|
|
// `hasTree` same as `groups`, but meaning - which children of given prefix have dbutils.TrieOfAccountsBucket record
|
|
// `hasHash` same as `groups`, but meaning - which children of given prefix are branch nodes and their hashes can be saved and used on next trie resolution.
|
|
// Whenever a `BRANCH` or `BRANCHHASH` opcode is emitted, the set of digits is taken from the corresponding `groups` item, which is
|
|
// then removed from the slice. This signifies the usage of the number of the stack items by the `BRANCH` or `BRANCHHASH` opcode.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
|
|
|
|
// GenStructStepEx is extended to support optional generation of an Account Proof during trie_root.go CalcTrieRoot().
|
|
// The wrapper below calls it with nil/false defaults so that other callers do not need to be modified.
|
|
func GenStructStepEx(
|
|
retain func(prefix []byte) bool,
|
|
curr, succ []byte,
|
|
e structInfoReceiver,
|
|
h HashCollector2,
|
|
data GenStructStepData,
|
|
groups []uint16,
|
|
hasTree []uint16,
|
|
hasHash []uint16,
|
|
trace bool,
|
|
retainProof func(prefix []byte) *proofElement,
|
|
cutoff bool,
|
|
) ([]uint16, []uint16, []uint16, error) {
|
|
for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true {
|
|
var precExists = len(groups) > 0
|
|
// Calculate the prefix of the smallest prefix group containing curr
|
|
var precLen int
|
|
if len(groups) > 0 {
|
|
precLen = len(groups) - 1
|
|
}
|
|
succLen := prefixLen(succ, curr)
|
|
var maxLen int
|
|
if precLen > succLen {
|
|
maxLen = precLen
|
|
} else {
|
|
maxLen = succLen
|
|
}
|
|
if trace || maxLen >= len(curr) {
|
|
fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions)
|
|
}
|
|
|
|
// Add the digit immediately following the max common prefix and compute length of remainder length
|
|
extraDigit := curr[maxLen]
|
|
for maxLen >= len(groups) {
|
|
groups = append(groups, 0)
|
|
}
|
|
groups[maxLen] |= 1 << extraDigit
|
|
remainderStart := maxLen
|
|
if len(succ) > 0 || precExists {
|
|
remainderStart++
|
|
}
|
|
remainderLen := len(curr) - remainderStart
|
|
for remainderStart+remainderLen >= len(hasTree) {
|
|
hasTree = append(hasTree, 0)
|
|
hasHash = append(hasHash, 0)
|
|
}
|
|
//fmt.Printf("groups is now %x,%d,%b\n", extraDigit, maxLen, groups)
|
|
|
|
// retainIfProving will call setProofElement to a new proof element
|
|
// it is the caller's responsibility set the proof element to nil after the
|
|
// next element invocation. This function returns whether a proof is needed
|
|
// for this node.
|
|
retainIfProving := func(key []byte) bool {
|
|
if retainProof != nil {
|
|
if pe := retainProof(key); pe != nil {
|
|
e.setProofElement(pe)
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
if !buildExtensions {
|
|
switch v := data.(type) {
|
|
case *GenStructStepHashData:
|
|
if trace {
|
|
fmt.Printf("HashData before: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups)
|
|
}
|
|
if v.HasTree {
|
|
hasTree[len(curr)-1] |= 1 << curr[len(curr)-1] // keep track of existing records in DB
|
|
}
|
|
hasHash[len(curr)-1] |= 1 << curr[len(curr)-1] // register myself in parent bitmap
|
|
if trace {
|
|
fmt.Printf("HashData: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups)
|
|
}
|
|
/* building a hash */
|
|
if err := e.hash(v.Hash[:]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
buildExtensions = true
|
|
case *GenStructStepAccountData:
|
|
proving := retainIfProving(curr[:remainderStart])
|
|
if proving || retain(curr[:maxLen]) {
|
|
if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
if proving {
|
|
e.setProofElement(nil)
|
|
}
|
|
} else {
|
|
if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
case *GenStructStepLeafData:
|
|
/* building leafs */
|
|
proving := retainIfProving(curr[:remainderStart])
|
|
if proving || retain(curr[:maxLen]) {
|
|
if err := e.leaf(remainderLen, curr, v.Value); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
if proving {
|
|
e.setProofElement(nil)
|
|
}
|
|
} else {
|
|
if err := e.leafHash(remainderLen, curr, v.Value); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
default:
|
|
panic(fmt.Errorf("unknown data type: %T", data))
|
|
}
|
|
}
|
|
|
|
if buildExtensions {
|
|
if remainderLen > 0 {
|
|
if trace {
|
|
fmt.Printf("Extension before: %x->%x,%b, %b, %b\n", curr[:remainderStart], curr[remainderStart:remainderStart+remainderLen], hasHash, hasTree, groups)
|
|
}
|
|
// can't use hash of extension node
|
|
// but must propagate hasBranch bits to keep tracking all existing DB records
|
|
// groups bit also require propagation, but it's done automatically
|
|
from := remainderStart
|
|
if from == 0 {
|
|
from = 1
|
|
}
|
|
hasHash[from-1] &^= 1 << curr[from-1]
|
|
for i := from; i < remainderStart+remainderLen; i++ {
|
|
if 1<<curr[i]&hasTree[i] != 0 {
|
|
hasTree[from-1] |= 1 << curr[from-1]
|
|
}
|
|
if h != nil {
|
|
if err := h(curr[:i], 0, 0, 0, nil, nil); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
}
|
|
hasTree = hasTree[:from]
|
|
hasHash = hasHash[:from]
|
|
if trace {
|
|
fmt.Printf("Extension: %x, %b, %b, %b\n", curr[remainderStart:remainderStart+remainderLen], hasHash, hasTree, groups)
|
|
}
|
|
/* building extensions */
|
|
proving := retainIfProving(curr[:remainderStart])
|
|
if proving || retain(curr[:maxLen]) {
|
|
if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
if proving {
|
|
e.setProofElement(nil)
|
|
}
|
|
} else {
|
|
if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for the optional part
|
|
if precLen <= succLen && len(succ) > 0 {
|
|
return groups, hasTree, hasHash, nil
|
|
}
|
|
|
|
var usefulHashes []byte
|
|
|
|
if h != nil && (hasHash[maxLen] != 0 || hasTree[maxLen] != 0) { // top level must be in db
|
|
if trace {
|
|
fmt.Printf("why now: %x,%b,%b,%b\n", curr[:maxLen], hasHash, hasTree, groups)
|
|
}
|
|
usefulHashes = e.topHashes(curr[:maxLen], hasHash[maxLen], groups[maxLen])
|
|
if maxLen != 0 {
|
|
hasTree[maxLen-1] |= 1 << curr[maxLen-1] // register myself in parent bitmap
|
|
}
|
|
if maxLen > 1 {
|
|
if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, nil); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close the immediately encompassing prefix group, if needed
|
|
if len(succ) > 0 || precExists {
|
|
if maxLen > 0 {
|
|
if trace {
|
|
fmt.Printf("Branch before: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups)
|
|
}
|
|
hasHash[maxLen-1] |= 1 << curr[maxLen-1]
|
|
if hasTree[maxLen] != 0 {
|
|
hasTree[maxLen-1] |= 1 << curr[maxLen-1]
|
|
}
|
|
if trace {
|
|
fmt.Printf("Branch: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups)
|
|
}
|
|
}
|
|
|
|
if trace {
|
|
e.printTopHashes(curr[:maxLen], 0, groups[maxLen])
|
|
}
|
|
proving := retainIfProving(curr[:maxLen])
|
|
if proving || retain(curr[:maxLen]) {
|
|
if err := e.branch(groups[maxLen]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
if proving {
|
|
e.setProofElement(nil)
|
|
}
|
|
} else {
|
|
if err := e.branchHash(groups[maxLen]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
}
|
|
if h != nil {
|
|
send := maxLen == 0 && (hasTree[maxLen] != 0 || hasHash[maxLen] != 0) // account.root - store only if have useful info
|
|
send = send || (maxLen == 1 && groups[maxLen] != 0) // first level of trie_account - store in any case
|
|
if send {
|
|
if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, e.topHash()[1:]); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
}
|
|
groups = groups[:maxLen]
|
|
hasTree = hasTree[:maxLen]
|
|
hasHash = hasHash[:maxLen]
|
|
// Check the end of recursion
|
|
if precLen == 0 {
|
|
return groups, hasTree, hasHash, nil
|
|
}
|
|
// Identify preceding key for the buildExtensions invocation
|
|
|
|
curr = curr[:precLen]
|
|
for len(groups) > 0 && groups[len(groups)-1] == 0 {
|
|
groups = groups[:len(groups)-1]
|
|
}
|
|
}
|
|
return nil, nil, nil, nil
|
|
}
|
|
func GenStructStep(
|
|
retain func(prefix []byte) bool,
|
|
curr, succ []byte,
|
|
e structInfoReceiver,
|
|
h HashCollector2,
|
|
data GenStructStepData,
|
|
groups []uint16,
|
|
hasTree []uint16,
|
|
hasHash []uint16,
|
|
trace bool,
|
|
) ([]uint16, []uint16, []uint16, error) {
|
|
return GenStructStepEx(retain, curr, succ, e, h, data, groups, hasTree, hasHash, trace, nil, false)
|
|
}
|
|
|
|
func GenStructStepOld(
|
|
retain func(prefix []byte) bool,
|
|
curr, succ []byte,
|
|
e structInfoReceiver,
|
|
h HashCollector,
|
|
data GenStructStepData,
|
|
groups []uint16,
|
|
trace bool,
|
|
) ([]uint16, error) {
|
|
for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true {
|
|
var precExists = len(groups) > 0
|
|
// Calculate the prefix of the smallest prefix group containing curr
|
|
var precLen int
|
|
if len(groups) > 0 {
|
|
precLen = len(groups) - 1
|
|
}
|
|
succLen := prefixLen(succ, curr)
|
|
var maxLen int
|
|
if precLen > succLen {
|
|
maxLen = precLen
|
|
} else {
|
|
maxLen = succLen
|
|
}
|
|
if trace || maxLen >= len(curr) {
|
|
fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions)
|
|
}
|
|
// Add the digit immediately following the max common prefix and compute length of remainder length
|
|
extraDigit := curr[maxLen]
|
|
for maxLen >= len(groups) {
|
|
groups = append(groups, 0)
|
|
}
|
|
groups[maxLen] |= 1 << extraDigit
|
|
//fmt.Printf("groups is now %b\n", groups)
|
|
remainderStart := maxLen
|
|
if len(succ) > 0 || precExists {
|
|
remainderStart++
|
|
}
|
|
remainderLen := len(curr) - remainderStart
|
|
|
|
if !buildExtensions {
|
|
switch v := data.(type) {
|
|
case *GenStructStepHashData:
|
|
/* building a hash */
|
|
if err := e.hash(v.Hash[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
buildExtensions = true
|
|
case *GenStructStepAccountData:
|
|
if retain(curr[:maxLen]) {
|
|
if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
case *GenStructStepLeafData:
|
|
/* building leafs */
|
|
if retain(curr[:maxLen]) {
|
|
if err := e.leaf(remainderLen, curr, v.Value); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
if err := e.leafHash(remainderLen, curr, v.Value); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
default:
|
|
panic(fmt.Errorf("unknown data type: %T", data))
|
|
}
|
|
}
|
|
|
|
if buildExtensions {
|
|
if remainderLen > 0 {
|
|
if trace {
|
|
fmt.Printf("Extension %x\n", curr[remainderStart:remainderStart+remainderLen])
|
|
}
|
|
/* building extensions */
|
|
if retain(curr[:maxLen]) {
|
|
if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Check for the optional part
|
|
if precLen <= succLen && len(succ) > 0 {
|
|
return groups, nil
|
|
}
|
|
// Close the immediately encompassing prefix group, if needed
|
|
if len(succ) > 0 || precExists {
|
|
if retain(curr[:maxLen]) {
|
|
if err := e.branch(groups[maxLen]); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
if err := e.branchHash(groups[maxLen]); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
if h != nil {
|
|
if err := h(curr[:maxLen], e.topHash()[1:]); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
groups = groups[:maxLen]
|
|
// Check the end of recursion
|
|
if precLen == 0 {
|
|
return groups, nil
|
|
}
|
|
// Identify preceding key for the buildExtensions invocation
|
|
curr = curr[:precLen]
|
|
for len(groups) > 0 && groups[len(groups)-1] == 0 {
|
|
groups = groups[:len(groups)-1]
|
|
}
|
|
}
|
|
return nil, nil
|
|
|
|
}
|