mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-06 19:12:19 +00:00
436493350e
1. changes sentinel to use an http-like interface 2. moves hexutil, crypto/blake2b, metrics packages to erigon-lib
389 lines
12 KiB
Go
389 lines
12 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty off
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"github.com/ledgerwatch/erigon-lib/common/hexutil"
|
|
"math/big"
|
|
"sort"
|
|
|
|
"github.com/holiman/uint256"
|
|
libcommon "github.com/ledgerwatch/erigon-lib/common"
|
|
"github.com/ledgerwatch/erigon-lib/common/length"
|
|
"github.com/ledgerwatch/erigon/core/types/accounts"
|
|
)
|
|
|
|
type RetainDecider interface {
|
|
Retain([]byte) bool
|
|
IsCodeTouched(libcommon.Hash) bool
|
|
}
|
|
|
|
type RetainDeciderWithMarker interface {
|
|
RetainDecider
|
|
// AddKeyWithMarker adds a key in KEY encoding with marker and returns the
|
|
// nibble encoded key.
|
|
AddKeyWithMarker(key []byte, marker bool) []byte
|
|
RetainWithMarker(prefix []byte) (retain bool, nextMarkedKey []byte)
|
|
}
|
|
|
|
// ProofRetainer is a wrapper around the RetainList passed to the trie builder.
|
|
// It is responsible for aggregating proof values from the trie computation and
|
|
// will return a valid accounts.AccProofresult after the trie root hash
|
|
// calculation has completed.
|
|
type ProofRetainer struct {
|
|
rl *RetainList
|
|
addr libcommon.Address
|
|
acc *accounts.Account
|
|
accHexKey []byte
|
|
storageKeys []libcommon.Hash
|
|
storageHexKeys [][]byte
|
|
proofs []*proofElement
|
|
}
|
|
|
|
// NewProofRetainer creates a new ProofRetainer instance for a given account and
|
|
// set of storage keys. The trie keys corresponding to the account key, and its
|
|
// storage keys are added to the given RetainList. The ProofRetainer should be
|
|
// set onto the FlatDBTrieLoader via SetProofRetainer before performing its Load
|
|
// operation in order to appropriately collect the proof elements.
|
|
func NewProofRetainer(addr libcommon.Address, a *accounts.Account, storageKeys []libcommon.Hash, rl *RetainList) (*ProofRetainer, error) {
|
|
addrHash, err := libcommon.HashData(addr[:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
accHexKey := rl.AddKey(addrHash[:])
|
|
|
|
storageHexKeys := make([][]byte, len(storageKeys))
|
|
for i, sk := range storageKeys {
|
|
storageHash, err := libcommon.HashData(sk[:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var compactEncoded [72]byte
|
|
copy(compactEncoded[:32], addrHash[:])
|
|
binary.BigEndian.PutUint64(compactEncoded[32:40], a.Incarnation)
|
|
copy(compactEncoded[40:], storageHash[:])
|
|
storageHexKeys[i] = rl.AddKey(compactEncoded[:])
|
|
}
|
|
|
|
return &ProofRetainer{
|
|
rl: rl,
|
|
addr: addr,
|
|
acc: a,
|
|
accHexKey: accHexKey,
|
|
storageKeys: storageKeys,
|
|
storageHexKeys: storageHexKeys,
|
|
}, nil
|
|
}
|
|
|
|
// ProofElement requests a new proof element for a given prefix. This proof
|
|
// element is retained by the ProofRetainer, and will be utilized to compute the
|
|
// proof after the trie computation has completed. The prefix is the standard
|
|
// nibble encoded prefix used in the rest of the trie computations.
|
|
func (pr *ProofRetainer) ProofElement(prefix []byte) *proofElement {
|
|
if !pr.rl.Retain(prefix) {
|
|
return nil
|
|
}
|
|
|
|
switch {
|
|
case bytes.HasPrefix(pr.accHexKey, prefix):
|
|
// This prefix is a node between the account and the root
|
|
case bytes.HasPrefix(prefix, pr.accHexKey):
|
|
// This prefix is the account or one of its storage nodes
|
|
default:
|
|
// we do not need a proof element for this prefix
|
|
return nil
|
|
}
|
|
|
|
pe := &proofElement{
|
|
hexKey: append([]byte{}, prefix...),
|
|
}
|
|
// Since we do a depth-first traversal, reverse the proof elements so that
|
|
// they are ordered correctly root -> node -> ... -> leaf as dictated by
|
|
// EIP-1186
|
|
pr.proofs = append([]*proofElement{pe}, pr.proofs...)
|
|
return pe
|
|
}
|
|
|
|
// ProofResult may be invoked only after the Load function of the
|
|
// FlatDBTrieLoader has successfully executed. It will populate the Address,
|
|
// Balance, Nonce, and CodeHash from the account data supplied in the
|
|
// constructor, the StorageHash, storageKey values, and proof elements are
|
|
// supplied by the Load operation of the trie construction.
|
|
func (pr *ProofRetainer) ProofResult() (*accounts.AccProofResult, error) {
|
|
result := &accounts.AccProofResult{
|
|
Address: pr.addr,
|
|
Balance: (*hexutil.Big)(pr.acc.Balance.ToBig()),
|
|
Nonce: hexutil.Uint64(pr.acc.Nonce),
|
|
CodeHash: pr.acc.CodeHash,
|
|
}
|
|
|
|
for _, pe := range pr.proofs {
|
|
if !bytes.HasPrefix(pr.accHexKey, pe.hexKey) {
|
|
continue
|
|
}
|
|
result.AccountProof = append(result.AccountProof, pe.proof.Bytes())
|
|
if bytes.Equal(pr.accHexKey, pe.storageRootKey) {
|
|
result.StorageHash = pe.storageRoot
|
|
}
|
|
}
|
|
|
|
if pr.acc.Initialised && result.StorageHash == (libcommon.Hash{}) {
|
|
return nil, fmt.Errorf("did not find storage root in proof elements")
|
|
}
|
|
|
|
result.StorageProof = make([]accounts.StorProofResult, len(pr.storageKeys))
|
|
for i, sk := range pr.storageKeys {
|
|
result.StorageProof[i].Key = sk
|
|
hexKey := pr.storageHexKeys[i]
|
|
if !pr.acc.Initialised || result.StorageHash == EmptyRoot {
|
|
// The yellow paper makes it clear that the EmptyRoot is a special case
|
|
// when the trie has no nodes, but EIP-1186 states that the proof is
|
|
// "starting with the storageHash-Node". Since the trie has no nodes,
|
|
// it's unclear whether the correct proof should contain the EmptyRoot
|
|
// pre-image of RLP([]byte(nil)), or be empty. This implementation
|
|
// chooses 'empty' as it seems more consistent and it is expected that
|
|
// provers will treat the EmptyRoot as a special case and ignore the proof
|
|
// bytes.
|
|
result.StorageProof[i].Value = (*hexutil.Big)(new(big.Int))
|
|
continue
|
|
}
|
|
|
|
for _, pe := range pr.proofs {
|
|
if len(pe.hexKey) <= 2*32 {
|
|
// Ignore the proof elements above the storage tree (64 bytes, as nibble
|
|
// encoded)
|
|
continue
|
|
}
|
|
if !bytes.HasPrefix(hexKey, pe.hexKey) {
|
|
continue
|
|
}
|
|
|
|
if pe.storageValue != nil && bytes.Equal(pe.storageKey, hexKey[2*(length.Hash+length.Incarnation):]) {
|
|
result.StorageProof[i].Value = (*hexutil.Big)(pe.storageValue.ToBig())
|
|
}
|
|
|
|
result.StorageProof[i].Proof = append(result.StorageProof[i].Proof, pe.proof.Bytes())
|
|
}
|
|
|
|
if result.StorageProof[i].Value == nil {
|
|
result.StorageProof[i].Value = (*hexutil.Big)(new(big.Int))
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
// proofElement represent a node or leaf in the trie and its
|
|
// corresponding RLP encoding. We store the elements individually when
|
|
// aggregating as multiple keys (in particular storage keys) may need to
|
|
// reference the same proof elements in their Merkle proof.
|
|
type proofElement struct {
|
|
// key is the hex encoded key indicating the path of the
|
|
// element in the proof.
|
|
hexKey []byte
|
|
|
|
// buf is used to store the proof bytes
|
|
proof bytes.Buffer
|
|
|
|
// storageRoot stores the storage root if this is writing
|
|
// an account leaf
|
|
storageRoot libcommon.Hash
|
|
|
|
// storageRootKey stores the actual hexKey from which the storageRoot came.
|
|
// This is needed because other proof nodes can be included in the negative
|
|
// proof case.
|
|
storageRootKey []byte
|
|
|
|
// storageValue stores the value of the particular storage key if this writer
|
|
// is for a storage key
|
|
storageValue *uint256.Int
|
|
|
|
// storageKey stores the actual hexKey from which the storageValue came. This
|
|
// is needed because the same proofElement may be used to both prove and
|
|
// disprove two different storage elements.
|
|
storageKey []byte
|
|
}
|
|
|
|
// RetainList encapsulates the list of keys that are required to be fully available, or loaded
|
|
// (by using `BRANCH` opcode instead of `HASHER`) after processing of the sequence of key-value
|
|
// pairs
|
|
// DESCRIBED: docs/programmers_guide/guide.md#converting-sequence-of-keys-and-value-into-a-multiproof
|
|
type RetainList struct {
|
|
inited bool // Whether keys are sorted and "LTE" and "GT" indices set
|
|
minLength int // Mininum length of prefixes for which `HashOnly` function can return `true`
|
|
lteIndex int // Index of the "LTE" key in the keys slice. Next one is "GT"
|
|
hexes [][]byte
|
|
markers []bool
|
|
codeTouches map[libcommon.Hash]struct{}
|
|
}
|
|
|
|
// NewRetainList creates new RetainList
|
|
func NewRetainList(minLength int) *RetainList {
|
|
return &RetainList{minLength: minLength, codeTouches: make(map[libcommon.Hash]struct{})}
|
|
}
|
|
|
|
func (rl *RetainList) Len() int {
|
|
return len(rl.hexes)
|
|
}
|
|
func (rl *RetainList) Less(i, j int) bool {
|
|
return bytes.Compare(rl.hexes[i], rl.hexes[j]) < 0
|
|
}
|
|
func (rl *RetainList) Swap(i, j int) {
|
|
rl.hexes[i], rl.hexes[j] = rl.hexes[j], rl.hexes[i]
|
|
rl.markers[i], rl.markers[j] = rl.markers[j], rl.markers[i]
|
|
}
|
|
|
|
// AddKey adds a new key (in KEY encoding) to the list
|
|
func (rl *RetainList) AddKey(key []byte) []byte {
|
|
return rl.AddKeyWithMarker(key, false)
|
|
}
|
|
|
|
func (rl *RetainList) AddKeyWithMarker(key []byte, marker bool) []byte {
|
|
var nibbles = make([]byte, 2*len(key))
|
|
for i, b := range key {
|
|
nibbles[i*2] = b / 16
|
|
nibbles[i*2+1] = b % 16
|
|
}
|
|
rl.AddHex(nibbles)
|
|
rl.markers = append(rl.markers, marker)
|
|
return nibbles
|
|
}
|
|
|
|
// AddHex adds a new key (in HEX encoding) to the list
|
|
func (rl *RetainList) AddHex(hex []byte) {
|
|
rl.hexes = append(rl.hexes, hex)
|
|
}
|
|
|
|
// AddCodeTouch adds a new code touch into the resolve set
|
|
func (rl *RetainList) AddCodeTouch(codeHash libcommon.Hash) {
|
|
rl.codeTouches[codeHash] = struct{}{}
|
|
}
|
|
|
|
func (rl *RetainList) IsCodeTouched(codeHash libcommon.Hash) bool {
|
|
_, ok := rl.codeTouches[codeHash]
|
|
return ok
|
|
}
|
|
|
|
func (rl *RetainList) ensureInited() {
|
|
if rl.inited {
|
|
return
|
|
}
|
|
if len(rl.markers) == 0 {
|
|
rl.markers = make([]bool, len(rl.hexes))
|
|
}
|
|
if !sort.IsSorted(rl) {
|
|
sort.Sort(rl)
|
|
}
|
|
rl.lteIndex = 0
|
|
rl.inited = true
|
|
}
|
|
|
|
// Retain decides whether to emit `HASHER` or `BRANCH` for a given prefix, by
|
|
// checking if this is prefix of any of the keys added to the set
|
|
// Since keys in the set are sorted, and we expect that the prefixes will
|
|
// come in monotonically ascending order, we optimise for this, though
|
|
// the function would still work if the order is different
|
|
func (rl *RetainList) Retain(prefix []byte) bool {
|
|
rl.ensureInited()
|
|
if len(prefix) < rl.minLength {
|
|
return true
|
|
}
|
|
// Adjust "GT" if necessary
|
|
var gtAdjusted bool
|
|
for rl.lteIndex < len(rl.hexes)-1 && bytes.Compare(rl.hexes[rl.lteIndex+1], prefix) <= 0 {
|
|
rl.lteIndex++
|
|
gtAdjusted = true
|
|
}
|
|
// Adjust "LTE" if necessary (normally will not be necessary)
|
|
for !gtAdjusted && rl.lteIndex > 0 && bytes.Compare(rl.hexes[rl.lteIndex], prefix) > 0 {
|
|
rl.lteIndex--
|
|
}
|
|
if rl.lteIndex < len(rl.hexes) {
|
|
if bytes.HasPrefix(rl.hexes[rl.lteIndex], prefix) {
|
|
return true
|
|
}
|
|
}
|
|
if rl.lteIndex < len(rl.hexes)-1 {
|
|
if bytes.HasPrefix(rl.hexes[rl.lteIndex+1], prefix) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (rl *RetainList) RetainWithMarker(prefix []byte) (bool, []byte) {
|
|
rl.ensureInited()
|
|
if len(prefix) < rl.minLength {
|
|
return true, nil
|
|
}
|
|
// Adjust "GT" if necessary
|
|
var gtAdjusted bool
|
|
for rl.lteIndex < len(rl.hexes)-1 && bytes.Compare(rl.hexes[rl.lteIndex+1], prefix) <= 0 {
|
|
rl.lteIndex++
|
|
gtAdjusted = true
|
|
}
|
|
// Adjust "LTE" if necessary (normally will not be necessary)
|
|
for !gtAdjusted && rl.lteIndex > 0 && bytes.Compare(rl.hexes[rl.lteIndex], prefix) > 0 {
|
|
rl.lteIndex--
|
|
}
|
|
if rl.lteIndex < len(rl.hexes) {
|
|
if bytes.HasPrefix(rl.hexes[rl.lteIndex], prefix) {
|
|
return true, rl.nextMarkedItem(rl.lteIndex)
|
|
}
|
|
}
|
|
if rl.lteIndex < len(rl.hexes)-1 {
|
|
if bytes.HasPrefix(rl.hexes[rl.lteIndex+1], prefix) {
|
|
return true, rl.nextMarkedItem(rl.lteIndex + 1)
|
|
}
|
|
}
|
|
|
|
if rl.lteIndex < len(rl.hexes) {
|
|
if bytes.Compare(prefix, rl.hexes[rl.lteIndex]) <= 0 {
|
|
return false, rl.nextMarkedItem(rl.lteIndex)
|
|
}
|
|
}
|
|
if rl.lteIndex < len(rl.hexes)-1 {
|
|
if bytes.Compare(prefix, rl.hexes[rl.lteIndex+1]) <= 0 {
|
|
return false, rl.nextMarkedItem(rl.lteIndex + 1)
|
|
}
|
|
}
|
|
|
|
return false, nil
|
|
}
|
|
|
|
func (rl *RetainList) nextMarkedItem(index int) []byte {
|
|
for i := index; i < len(rl.markers); i++ {
|
|
if rl.markers[i] {
|
|
return rl.hexes[i]
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Rewind lets us reuse this list from the beginning
|
|
func (rl *RetainList) Rewind() {
|
|
rl.lteIndex = 0
|
|
}
|
|
|
|
func (rl *RetainList) String() string {
|
|
return fmt.Sprintf("%x", rl.hexes)
|
|
}
|