mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-15 23:38:19 +00:00
e58d0fa537
* Add B+ tree prototype implementation * Add Apache license header to all files Fix linter errors
484 lines
12 KiB
Go
484 lines
12 KiB
Go
/*
|
|
Copyright 2022 Erigon contributors
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package bptree
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
"unsafe"
|
|
)
|
|
|
|
type Keys []Felt
|
|
|
|
func (keys Keys) Len() int { return len(keys) }
|
|
|
|
func (keys Keys) Less(i, j int) bool { return keys[i] < keys[j] }
|
|
|
|
func (keys Keys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
|
|
|
|
func (keys Keys) Contains(key Felt) bool {
|
|
for _, k := range keys {
|
|
if k == key {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (keys Keys) String() string {
|
|
b := strings.Builder{}
|
|
for i, k := range keys {
|
|
fmt.Fprintf(&b, "%v", k)
|
|
if i != len(keys)-1 {
|
|
fmt.Fprintf(&b, " ")
|
|
}
|
|
}
|
|
return b.String()
|
|
}
|
|
|
|
type KeyValues struct {
|
|
keys []*Felt
|
|
values []*Felt
|
|
}
|
|
|
|
func (kv KeyValues) Len() int { return len(kv.keys) }
|
|
|
|
func (kv KeyValues) Less(i, j int) bool { return *kv.keys[i] < *kv.keys[j] }
|
|
|
|
func (kv KeyValues) Swap(i, j int) {
|
|
kv.keys[i], kv.keys[j] = kv.keys[j], kv.keys[i]
|
|
kv.values[i], kv.values[j] = kv.values[j], kv.values[i]
|
|
}
|
|
|
|
func (kv KeyValues) String() string {
|
|
b := strings.Builder{}
|
|
for i, k := range kv.keys {
|
|
v := kv.values[i]
|
|
fmt.Fprintf(&b, "{%v, %v}", *k, *v)
|
|
if i != len(kv.keys)-1 {
|
|
fmt.Fprintf(&b, " ")
|
|
}
|
|
}
|
|
return b.String()
|
|
}
|
|
|
|
type Node23 struct {
|
|
isLeaf bool
|
|
children []*Node23
|
|
keys []*Felt
|
|
values []*Felt
|
|
exposed bool
|
|
updated bool
|
|
}
|
|
|
|
func (n *Node23) String() string {
|
|
s := fmt.Sprintf("{%p isLeaf=%t keys=%v-%v children=[", n, n.isLeaf, deref(n.keys), n.keys)
|
|
for i, child := range n.children {
|
|
s += fmt.Sprintf("%p", child)
|
|
if i != len(n.children)-1 {
|
|
s += " "
|
|
}
|
|
}
|
|
s += "]}"
|
|
return s
|
|
}
|
|
|
|
func makeInternalNode(children []*Node23, keys []*Felt, stats *Stats) *Node23 {
|
|
stats.CreatedCount++
|
|
n := &Node23{isLeaf: false, children: children, keys: keys, values: make([]*Felt, 0), exposed: true, updated: true}
|
|
return n
|
|
}
|
|
|
|
func makeLeafNode(keys, values []*Felt, stats *Stats) *Node23 {
|
|
ensure(len(keys) > 0, "number of keys is zero")
|
|
ensure(len(keys) == len(values), "keys and values have different cardinality")
|
|
stats.CreatedCount++
|
|
n := &Node23{isLeaf: true, children: make([]*Node23, 0), keys: keys, values: values, exposed: true, updated: true}
|
|
return n
|
|
}
|
|
|
|
func makeEmptyLeafNode() *Node23 {
|
|
// At least nil next key is always present
|
|
return makeLeafNode(make([]*Felt, 1), make([]*Felt, 1), &Stats{}) // do not count it into stats
|
|
}
|
|
|
|
func promote(nodes []*Node23, intermediateKeys []*Felt, stats *Stats) *Node23 {
|
|
if len(nodes) > 3 {
|
|
promotedNodes := make([]*Node23, 0)
|
|
promotedKeys := make([]*Felt, 0)
|
|
for len(nodes) > 3 {
|
|
promotedNodes = append(promotedNodes, makeInternalNode(nodes[:2], intermediateKeys[:1], stats))
|
|
nodes = nodes[2:]
|
|
promotedKeys = append(promotedKeys, intermediateKeys[1])
|
|
intermediateKeys = intermediateKeys[2:]
|
|
}
|
|
promotedNodes = append(promotedNodes, makeInternalNode(nodes, intermediateKeys, stats))
|
|
return promote(promotedNodes, promotedKeys, stats)
|
|
} else {
|
|
promotedRoot := makeInternalNode(nodes, intermediateKeys, stats)
|
|
return promotedRoot
|
|
}
|
|
}
|
|
|
|
func (n *Node23) reset() {
|
|
n.exposed = false
|
|
n.updated = false
|
|
if !n.isLeaf {
|
|
for _, child := range n.children {
|
|
child.reset()
|
|
}
|
|
}
|
|
}
|
|
|
|
func (n *Node23) isValid() (bool, error) {
|
|
ensure(n.exposed || !n.updated, "isValid: node is not exposed but updated")
|
|
if n.isLeaf {
|
|
return n.isValidLeaf()
|
|
} else {
|
|
return n.isValidInternal()
|
|
}
|
|
}
|
|
|
|
func (n *Node23) isValidLeaf() (bool, error) {
|
|
ensure(n.isLeaf, "isValidLeaf: node is not leaf")
|
|
|
|
/* Any leaf node shall have no children */
|
|
if n.childrenCount() != 0 {
|
|
return false, fmt.Errorf("invalid %d children in %v", n.childrenCount(), n)
|
|
}
|
|
/* Any leaf node can have either 1 or 2 keys (plus next key) */
|
|
return n.keyCount() == 1+1 || n.keyCount() == 2+1, fmt.Errorf("invalid %d keys in %v", n.keyCount(), n)
|
|
}
|
|
|
|
func (n *Node23) isValidInternal() (bool, error) {
|
|
ensure(!n.isLeaf, "isValidInternal: node is leaf")
|
|
|
|
/* Any internal node can have either 1 keys and 2 children or 2 keys and 3 children */
|
|
if n.keyCount() != 1 && n.keyCount() != 2 {
|
|
return false, fmt.Errorf("invalid %d keys in %v", n.keyCount(), n)
|
|
}
|
|
if n.keyCount() == 1 && n.childrenCount() != 2 {
|
|
return false, fmt.Errorf("invalid %d keys %d children in %v", n.keyCount(), n.childrenCount(), n)
|
|
}
|
|
if n.keyCount() == 2 && n.childrenCount() != 3 {
|
|
return false, fmt.Errorf("invalid %d children in %v", n.keyCount(), n)
|
|
}
|
|
subtree := n.walkNodesPostOrder()
|
|
// Check that each internal node has unique keys corresponding to leaf next keys
|
|
for _, key := range n.keys {
|
|
hasNextKey := false
|
|
for _, node := range subtree {
|
|
if !node.isLeaf {
|
|
if node != n && node.hasKey(key) {
|
|
return false, fmt.Errorf("internal key %d not unique", *key)
|
|
}
|
|
continue
|
|
}
|
|
leafNextKey := node.nextKey()
|
|
if leafNextKey != nil && *key == *leafNextKey {
|
|
hasNextKey = true
|
|
}
|
|
}
|
|
if !hasNextKey {
|
|
return false, fmt.Errorf("internal key %d not present in next keys", *key)
|
|
}
|
|
}
|
|
// Check that leaves in subtree are chained together (next key -> first key)
|
|
for i, node := range subtree {
|
|
if !node.isLeaf {
|
|
// Post-order walk => previous and next nodes are contiguous leaves except last
|
|
if i == len(subtree)-1 {
|
|
continue
|
|
}
|
|
previous, next := subtree[i], subtree[i+1]
|
|
if previous.isLeaf && next.isLeaf {
|
|
// Previous node's next key must be equal to next node's first key
|
|
if previous.nextKey() != next.firstKey() {
|
|
return false, fmt.Errorf("nodes %v and %v not chained by next key", previous, next)
|
|
}
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
for i := len(n.children) - 1; i >= 0; i-- {
|
|
child := n.children[i]
|
|
// Check that each child subtree is a 2-3 tree
|
|
childValid, err := child.isValid()
|
|
if !childValid {
|
|
return false, fmt.Errorf("invalid child %v in %v, error: %v", child, n, err)
|
|
}
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
func (n *Node23) keyCount() int {
|
|
return len(n.keys)
|
|
}
|
|
|
|
func (n *Node23) childrenCount() int {
|
|
return len(n.children)
|
|
}
|
|
|
|
func (n *Node23) valueCount() int {
|
|
return len(n.values)
|
|
}
|
|
|
|
func (n *Node23) firstKey() *Felt {
|
|
ensure(len(n.keys) > 0, "firstKey: node has no key")
|
|
return n.keys[0]
|
|
}
|
|
|
|
func (n *Node23) firstValue() *Felt {
|
|
ensure(len(n.values) > 0, "firstValue: node has no value")
|
|
return n.values[0]
|
|
}
|
|
|
|
func (n *Node23) firstChild() *Node23 {
|
|
ensure(len(n.children) > 0, "firstChild: node has no children")
|
|
return n.children[0]
|
|
}
|
|
|
|
func (n *Node23) firstLeaf() *Node23 {
|
|
if n.isLeaf {
|
|
return n
|
|
}
|
|
firstLeaf := n.firstChild()
|
|
for !firstLeaf.isLeaf {
|
|
firstLeaf = firstLeaf.firstChild()
|
|
}
|
|
ensure(firstLeaf.isLeaf, "firstLeaf: last is not leaf")
|
|
return firstLeaf
|
|
}
|
|
|
|
func (n *Node23) lastChild() *Node23 {
|
|
ensure(len(n.children) > 0, "lastChild: node has no children")
|
|
return n.children[len(n.children)-1]
|
|
}
|
|
|
|
func (n *Node23) lastLeaf() *Node23 {
|
|
if n.isLeaf {
|
|
return n
|
|
}
|
|
lastLeaf := n.lastChild()
|
|
for !lastLeaf.isLeaf {
|
|
lastLeaf = lastLeaf.lastChild()
|
|
}
|
|
ensure(lastLeaf.isLeaf, "lastLeaf: last is not leaf")
|
|
return lastLeaf
|
|
}
|
|
|
|
func (n *Node23) nextKey() *Felt {
|
|
ensure(len(n.keys) > 0, "nextKey: node has no key")
|
|
return n.keys[len(n.keys)-1]
|
|
}
|
|
|
|
func (n *Node23) nextValue() *Felt {
|
|
ensure(len(n.values) > 0, "nextValue: node has no value")
|
|
return n.values[len(n.values)-1]
|
|
}
|
|
|
|
func (n *Node23) rawPointer() uintptr {
|
|
return uintptr(unsafe.Pointer(n))
|
|
}
|
|
|
|
func (n *Node23) setNextKey(nextKey *Felt, stats *Stats) {
|
|
ensure(len(n.keys) > 0, "setNextKey: node has no key")
|
|
n.keys[len(n.keys)-1] = nextKey
|
|
if !n.exposed {
|
|
n.exposed = true
|
|
stats.ExposedCount++
|
|
stats.OpeningHashes += n.howManyHashes()
|
|
}
|
|
n.updated = true
|
|
stats.UpdatedCount++
|
|
}
|
|
|
|
func (n *Node23) canonicalKeys() []Felt {
|
|
if n.isLeaf {
|
|
ensure(len(n.keys) > 0, "canonicalKeys: node has no key")
|
|
return deref(n.keys[:len(n.keys)-1])
|
|
} else {
|
|
return deref(n.keys)
|
|
}
|
|
}
|
|
|
|
func (n *Node23) hasKey(targetKey *Felt) bool {
|
|
var keys []*Felt
|
|
if n.isLeaf {
|
|
ensure(len(n.keys) > 0, "hasKey: node has no key")
|
|
keys = n.keys[:len(n.keys)-1]
|
|
} else {
|
|
keys = n.keys
|
|
}
|
|
for _, key := range keys {
|
|
if *key == *targetKey {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (n *Node23) isEmpty() bool {
|
|
if n.isLeaf {
|
|
// At least next key is always present
|
|
return n.keyCount() == 1
|
|
} else {
|
|
return n.childrenCount() == 0
|
|
}
|
|
}
|
|
|
|
func (n *Node23) height() int {
|
|
if n.isLeaf {
|
|
return 1
|
|
} else {
|
|
ensure(len(n.children) > 0, "height: internal node has zero children")
|
|
return n.children[0].height() + 1
|
|
}
|
|
}
|
|
|
|
func (n *Node23) keysInLevelOrder() []Felt {
|
|
keysByLevel := make([]Felt, 0)
|
|
for i := 0; i < n.height(); i++ {
|
|
keysByLevel = append(keysByLevel, n.keysByLevel(i)...)
|
|
}
|
|
return keysByLevel
|
|
}
|
|
|
|
func (n *Node23) keysByLevel(level int) []Felt {
|
|
if level == 0 {
|
|
return n.canonicalKeys()
|
|
} else {
|
|
levelKeys := make([]Felt, 0)
|
|
for _, child := range n.children {
|
|
childLevelKeys := child.keysByLevel(level - 1)
|
|
levelKeys = append(levelKeys, childLevelKeys...)
|
|
}
|
|
return levelKeys
|
|
}
|
|
}
|
|
|
|
type Walker func(*Node23) interface{}
|
|
|
|
func (n *Node23) walkPostOrder(w Walker) []interface{} {
|
|
items := make([]interface{}, 0)
|
|
if !n.isLeaf {
|
|
for _, child := range n.children {
|
|
child_items := child.walkPostOrder(w)
|
|
items = append(items, child_items...)
|
|
}
|
|
}
|
|
items = append(items, w(n))
|
|
return items
|
|
}
|
|
|
|
func (n *Node23) walkNodesPostOrder() []*Node23 {
|
|
nodeItems := n.walkPostOrder(func(n *Node23) interface{} { return n })
|
|
nodes := make([]*Node23, len(nodeItems))
|
|
for i := range nodeItems {
|
|
nodes[i] = nodeItems[i].(*Node23)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (n *Node23) howManyHashes() uint {
|
|
if n.isLeaf {
|
|
// all leaves except last one: 2 or 3 keys + 1 or 2 values => 3 or 5 data => 2 or 4 hashes
|
|
// last leaf: 1 or 2 keys + 1 or 2 values => 2 or 4 data => 1 or 3 hashes
|
|
switch n.keyCount() {
|
|
case 2:
|
|
nextKey := n.keys[1]
|
|
if nextKey == nil {
|
|
return 1
|
|
} else {
|
|
return 2
|
|
}
|
|
case 3:
|
|
nextKey := n.keys[2]
|
|
if nextKey == nil {
|
|
return 3
|
|
} else {
|
|
return 4
|
|
}
|
|
default:
|
|
ensure(false, fmt.Sprintf("howManyHashes: unexpected keyCount=%d\n", n.keyCount()))
|
|
return 0
|
|
}
|
|
} else {
|
|
// internal node: 2 or 3 children => 1 or 2 hashes
|
|
switch n.childrenCount() {
|
|
case 2:
|
|
return 1
|
|
case 3:
|
|
return 2
|
|
default:
|
|
ensure(false, fmt.Sprintf("howManyHashes: unexpected childrenCount=%d\n", n.childrenCount()))
|
|
return 0
|
|
}
|
|
}
|
|
}
|
|
|
|
func (n *Node23) hashNode() []byte {
|
|
if n.isLeaf {
|
|
return n.hashLeaf()
|
|
} else {
|
|
return n.hashInternal()
|
|
}
|
|
}
|
|
|
|
func (n *Node23) hashLeaf() []byte {
|
|
ensure(n.isLeaf, "hashLeaf: node is not leaf")
|
|
ensure(n.valueCount() == n.keyCount(), "hashLeaf: insufficient number of values")
|
|
switch n.keyCount() {
|
|
case 2:
|
|
k, nextKey, v := *n.keys[0], n.keys[1], *n.values[0]
|
|
h := hash2(k.Binary(), v.Binary())
|
|
if nextKey == nil {
|
|
return h
|
|
} else {
|
|
return hash2(h, (*nextKey).Binary())
|
|
}
|
|
case 3:
|
|
k1, k2, nextKey, v1, v2 := *n.keys[0], *n.keys[1], n.keys[2], *n.values[0], *n.values[1]
|
|
h1 := hash2(k1.Binary(), v1.Binary())
|
|
h2 := hash2(k2.Binary(), v2.Binary())
|
|
h12 := hash2(h1, h2)
|
|
if nextKey == nil {
|
|
return h12
|
|
} else {
|
|
return hash2(h12, (*nextKey).Binary())
|
|
}
|
|
default:
|
|
ensure(false, fmt.Sprintf("hashLeaf: unexpected keyCount=%d\n", n.keyCount()))
|
|
return []byte{}
|
|
}
|
|
}
|
|
|
|
func (n *Node23) hashInternal() []byte {
|
|
ensure(!n.isLeaf, "hashInternal: node is not internal")
|
|
switch n.childrenCount() {
|
|
case 2:
|
|
child1, child2 := n.children[0], n.children[1]
|
|
return hash2(child1.hashNode(), child2.hashNode())
|
|
case 3:
|
|
child1, child2, child3 := n.children[0], n.children[1], n.children[2]
|
|
return hash2(hash2(child1.hashNode(), child2.hashNode()), child3.hashNode())
|
|
default:
|
|
ensure(false, fmt.Sprintf("hashInternal: unexpected childrenCount=%d\n", n.childrenCount()))
|
|
return []byte{}
|
|
}
|
|
}
|