mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-07 19:41:19 +00:00
8c9a55bb21
* use mutation over tx * clear * add .CommitAndBegin() method * multip put 2 * right sorting * write non-random things to tx * write non-random things to tx * disable multi put 2 * clean * clean * remove multiput2 * clean * clean * clean * clean * clean * add receipts
1997 lines
71 KiB
Go
1997 lines
71 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package core
|
|
|
|
import (
|
|
"context"
|
|
"crypto/ecdsa"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"math/big"
|
|
"math/rand"
|
|
"os"
|
|
"runtime"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/holiman/uint256"
|
|
|
|
"github.com/ledgerwatch/turbo-geth/common"
|
|
"github.com/ledgerwatch/turbo-geth/common/u256"
|
|
"github.com/ledgerwatch/turbo-geth/core/state"
|
|
"github.com/ledgerwatch/turbo-geth/core/types"
|
|
"github.com/ledgerwatch/turbo-geth/crypto"
|
|
"github.com/ledgerwatch/turbo-geth/ethdb"
|
|
"github.com/ledgerwatch/turbo-geth/event"
|
|
"github.com/ledgerwatch/turbo-geth/params"
|
|
)
|
|
|
|
// testTxPoolConfig is a transaction pool configuration without stateful disk
|
|
// sideeffects used during testing.
|
|
var testTxPoolConfig TxPoolConfig
|
|
|
|
func init() {
|
|
testTxPoolConfig = DefaultTxPoolConfig
|
|
testTxPoolConfig.Journal = ""
|
|
testTxPoolConfig.StartOnInit = true
|
|
}
|
|
|
|
type testBlockChain struct {
|
|
gasLimit uint64
|
|
chainHeadFeed *event.Feed
|
|
}
|
|
|
|
func (bc *testBlockChain) CurrentBlock() *types.Block {
|
|
return types.NewBlock(&types.Header{
|
|
GasLimit: bc.gasLimit,
|
|
}, nil, nil, nil)
|
|
}
|
|
|
|
func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
|
|
return bc.CurrentBlock()
|
|
}
|
|
|
|
func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
|
|
return bc.chainHeadFeed.Subscribe(ch)
|
|
}
|
|
|
|
func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction {
|
|
return pricedTransaction(nonce, gaslimit, u256.Num1, key)
|
|
}
|
|
|
|
func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *uint256.Int, key *ecdsa.PrivateKey) *types.Transaction {
|
|
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, uint256.NewInt().SetUint64(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *uint256.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction {
|
|
data := make([]byte, bytes)
|
|
// it is only a test, so insecure random is fine here
|
|
rand.Read(data) //nolint:gosec
|
|
|
|
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, uint256.NewInt(), gaslimit, gasprice, data), types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func setupTxPool() (*TxPool, *ecdsa.PrivateKey, func()) {
|
|
diskdb := ethdb.NewMemDatabase()
|
|
|
|
key, _ := crypto.GenerateKey()
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, diskdb, txCacher)
|
|
//nolint:errcheck
|
|
pool.Start(1000000000, 0)
|
|
|
|
clear := func() {
|
|
pool.Stop()
|
|
txCacher.Close()
|
|
diskdb.Close()
|
|
}
|
|
return pool, key, clear
|
|
}
|
|
|
|
// validateTxPoolInternals checks various consistency invariants within the pool.
|
|
func validateTxPoolInternals(pool *TxPool) error {
|
|
pool.mu.RLock()
|
|
defer pool.mu.RUnlock()
|
|
|
|
// Ensure the total transaction set is consistent with pending + queued
|
|
pending, queued := pool.stats()
|
|
if total := pool.all.Count(); total != pending+queued {
|
|
return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
|
|
}
|
|
if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued {
|
|
return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued)
|
|
}
|
|
|
|
// Ensure the next nonce to assign is the correct one
|
|
for addr, txs := range pool.pending {
|
|
// Find the last transaction
|
|
var last uint64
|
|
for nonce := range txs.txs.items {
|
|
if last < nonce {
|
|
last = nonce
|
|
}
|
|
}
|
|
if nonce := pool.pendingNonces.get(addr); nonce != last+1 {
|
|
return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// validateEvents checks that the correct number of transaction addition events
|
|
// were fired on the pool's event feed.
|
|
func validateEvents(events chan NewTxsEvent, count int) error {
|
|
var received []*types.Transaction
|
|
|
|
for len(received) < count {
|
|
select {
|
|
case ev := <-events:
|
|
received = append(received, ev.Txs...)
|
|
case <-time.After(time.Second):
|
|
return fmt.Errorf("event #%d not fired", len(received))
|
|
}
|
|
}
|
|
if len(received) > count {
|
|
return fmt.Errorf("more than %d events fired: %v", count, received[count:])
|
|
}
|
|
select {
|
|
case ev := <-events:
|
|
return fmt.Errorf("more than %d events fired: %v", count, ev.Txs)
|
|
|
|
case <-time.After(50 * time.Millisecond):
|
|
// This branch should be "default", but it's a data race between goroutines,
|
|
// reading the event channel and pushing into it, so better wait a bit ensuring
|
|
// really nothing gets injected.
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func deriveSender(tx *types.Transaction) (common.Address, error) {
|
|
return types.Sender(types.HomesteadSigner{}, tx)
|
|
}
|
|
|
|
type testChain struct {
|
|
*testBlockChain
|
|
address common.Address
|
|
trigger *bool
|
|
}
|
|
|
|
// This test simulates a scenario where a new block is imported during a
|
|
// state reset and tests whether the pending state is in sync with the
|
|
// block head event that initiated the resetState().
|
|
func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
var (
|
|
key, _ = crypto.GenerateKey()
|
|
address = crypto.PubkeyToAddress(key.PublicKey)
|
|
)
|
|
stateWriter := state.NewPlainStateWriter(db, nil, 1)
|
|
ibs := state.New(state.NewPlainStateReader(db))
|
|
|
|
// setup pool with 2 transaction in it
|
|
// Using AddBalance instead of SetBalance to make it dirty
|
|
ibs.AddBalance(address, new(uint256.Int).SetUint64(params.Ether))
|
|
ctx := context.Background()
|
|
if err := ibs.CommitBlock(ctx, stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
tx0 := transaction(0, 100000, key)
|
|
tx1 := transaction(1, 100000, key)
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("start tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
nonce := pool.Nonce(address)
|
|
if nonce != 0 {
|
|
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
|
|
}
|
|
|
|
pool.AddRemotesSync([]*types.Transaction{tx0, tx1})
|
|
|
|
nonce = pool.Nonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
|
|
// trigger state change in the background
|
|
//<-pool.requestReset(nil, nil)
|
|
|
|
if _, err := pool.Pending(); err != nil {
|
|
t.Fatalf("Could not fetch pending transactions: %v", err)
|
|
}
|
|
nonce = pool.Nonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
}
|
|
|
|
func TestInvalidTransactions(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
|
|
tx := transaction(0, 100, key)
|
|
from, _ := deriveSender(tx)
|
|
|
|
pool.currentState.AddBalance(from, u256.Num1)
|
|
if err := pool.AddRemote(tx); err != ErrInsufficientFunds {
|
|
t.Error("expected", ErrInsufficientFunds)
|
|
}
|
|
|
|
balance := new(big.Int).Add(tx.Value().ToBig(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice().ToBig()))
|
|
x, _ := uint256.FromBig(balance)
|
|
pool.currentState.AddBalance(from, x)
|
|
if err := pool.AddRemote(tx); err != ErrIntrinsicGas {
|
|
t.Error("expected", ErrIntrinsicGas, "got", err)
|
|
}
|
|
|
|
pool.currentState.SetNonce(from, 1)
|
|
pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(0xffffffffffffff))
|
|
tx = transaction(0, 100000, key)
|
|
if err := pool.AddRemote(tx); err != ErrNonceTooLow {
|
|
t.Error("expected", ErrNonceTooLow)
|
|
}
|
|
|
|
tx = transaction(1, 100000, key)
|
|
pool.gasPrice = big.NewInt(1000)
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced {
|
|
t.Error("expected", ErrUnderpriced, "got", err)
|
|
}
|
|
if err := pool.AddLocal(tx); err != nil {
|
|
t.Error("expected", nil, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionQueue(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
|
|
tx := transaction(0, 100, key)
|
|
from, _ := deriveSender(tx)
|
|
pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(1000))
|
|
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected valid txs to be 1 is", len(pool.pending))
|
|
}
|
|
|
|
tx = transaction(1, 100, key)
|
|
from, _ = deriveSender(tx)
|
|
pool.currentState.SetNonce(from, 2)
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
|
|
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
|
|
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
|
|
t.Error("expected transaction to be in tx pool")
|
|
}
|
|
if len(pool.queue) > 0 {
|
|
t.Error("expected transaction queue to be empty. is", len(pool.queue))
|
|
}
|
|
}
|
|
|
|
func TestTransactionQueue2(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
tx1 := transaction(0, 100, key)
|
|
tx2 := transaction(10, 100, key)
|
|
tx3 := transaction(11, 100, key)
|
|
from, _ := deriveSender(tx1)
|
|
pool.currentState.AddBalance(from, uint256.NewInt().SetUint64(1000))
|
|
|
|
pool.enqueueTx(tx1.Hash(), tx1)
|
|
pool.enqueueTx(tx2.Hash(), tx2)
|
|
pool.enqueueTx(tx3.Hash(), tx3)
|
|
|
|
pool.promoteExecutables([]common.Address{from})
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected pending length to be 1, got", len(pool.pending))
|
|
}
|
|
if pool.queue[from].Len() != 2 {
|
|
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
|
|
}
|
|
}
|
|
|
|
func TestTransactionChainFork(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
stateWriter := state.NewPlainStateWriter(pool.chaindb, nil, 1)
|
|
ibs := state.New(state.NewPlainStateReader(pool.chaindb))
|
|
ibs.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000))
|
|
ctx := context.Background()
|
|
if err := ibs.CommitBlock(ctx, stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
pool.ResetHead(1000000000, 1)
|
|
}
|
|
resetState()
|
|
|
|
tx := transaction(0, 100000, key)
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
pool.RemoveTx(tx.Hash(), true)
|
|
|
|
// reset the pool's internal state
|
|
resetState()
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionDoubleNonce(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
stateWriter := state.NewPlainStateWriter(pool.chaindb, nil, 1)
|
|
ibs := state.New(state.NewPlainStateReader(pool.chaindb))
|
|
ibs.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000))
|
|
ctx := context.Background()
|
|
if err := ibs.CommitBlock(ctx, stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
pool.ResetHead(1000000000, 1)
|
|
}
|
|
resetState()
|
|
|
|
signer := types.HomesteadSigner{}
|
|
tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 100000, uint256.NewInt().SetUint64(1), nil), signer, key)
|
|
tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 1000000, uint256.NewInt().SetUint64(2), nil), signer, key)
|
|
tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, uint256.NewInt().SetUint64(100), 1000000, uint256.NewInt().SetUint64(1), nil), signer, key)
|
|
|
|
// Add the first two transaction, ensure higher priced stays only
|
|
if replace, err := pool.add(tx1, false); err != nil || replace {
|
|
t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
|
|
}
|
|
if replace, err := pool.add(tx2, false); err != nil || !replace {
|
|
t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
|
|
}
|
|
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
|
|
// Add the third transaction and ensure it's not saved (smaller price)
|
|
pool.add(tx3, false)
|
|
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
// Ensure the total transaction count is correct
|
|
if pool.all.Count() != 1 {
|
|
t.Error("expected 1 total transactions, got", pool.all.Count())
|
|
}
|
|
}
|
|
|
|
func TestTransactionMissingNonce(t *testing.T) {
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000))
|
|
tx := transaction(1, 100000, key)
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Error("expected 0 pending transactions, got", len(pool.pending))
|
|
}
|
|
if pool.queue[addr].Len() != 1 {
|
|
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
|
|
}
|
|
if pool.all.Count() != 1 {
|
|
t.Error("expected 1 total transactions, got", pool.all.Count())
|
|
}
|
|
}
|
|
|
|
func TestTransactionNonceRecovery(t *testing.T) {
|
|
t.Skip("fix when refactoring tx pool")
|
|
const n = 10
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.SetNonce(addr, n)
|
|
pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(100000000000000))
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
tx := transaction(n, 100000, key)
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Error(err)
|
|
}
|
|
// simulate some weird re-order of transactions and missing nonce(s)
|
|
pool.currentState.SetNonce(addr, n-1)
|
|
pool.currentState.AddBalance(addr, u256.Num1)
|
|
<-pool.requestReset(nil, nil)
|
|
if fn := pool.Nonce(addr); fn != n-1 {
|
|
t.Errorf("expected nonce to be %d, got %d", n-1, fn)
|
|
}
|
|
}
|
|
|
|
// Tests that if an account runs out of funds, any pending and queued transactions
|
|
// are dropped.
|
|
func TestTransactionDropping(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000))
|
|
|
|
// Add some pending and some queued transactions
|
|
var (
|
|
tx0 = transaction(0, 100, key)
|
|
tx1 = transaction(1, 200, key)
|
|
tx2 = transaction(2, 300, key)
|
|
tx10 = transaction(10, 100, key)
|
|
tx11 = transaction(11, 200, key)
|
|
tx12 = transaction(12, 300, key)
|
|
)
|
|
pool.promoteTx(account, tx0.Hash(), tx0)
|
|
pool.promoteTx(account, tx1.Hash(), tx1)
|
|
pool.promoteTx(account, tx2.Hash(), tx2)
|
|
pool.enqueueTx(tx10.Hash(), tx10)
|
|
pool.enqueueTx(tx11.Hash(), tx11)
|
|
pool.enqueueTx(tx12.Hash(), tx12)
|
|
|
|
// Check that pre and post validations leave the pool as is
|
|
if pool.pending[account].Len() != 3 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
|
|
}
|
|
if pool.queue[account].Len() != 3 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
|
|
}
|
|
if pool.all.Count() != 6 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
if pool.pending[account].Len() != 3 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
|
|
}
|
|
if pool.queue[account].Len() != 3 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
|
|
}
|
|
if pool.all.Count() != 6 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
|
|
}
|
|
// Reduce the balance of the account, and check that invalidated transactions are dropped
|
|
pool.currentState.AddBalance(account, uint256.NewInt().Neg(uint256.NewInt().SetUint64(650)))
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx1)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
|
|
t.Errorf("out-of-fund pending transaction present: %v", tx2)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx11)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
|
|
t.Errorf("out-of-fund queued transaction present: %v", tx12)
|
|
}
|
|
if pool.all.Count() != 4 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4)
|
|
}
|
|
// Reduce the block gas limit, check that invalidated transactions are dropped
|
|
pool.currentMaxGas = 100
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
|
|
t.Errorf("over-gased pending transaction present: %v", tx1)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
|
|
t.Errorf("over-gased queued transaction present: %v", tx11)
|
|
}
|
|
if pool.all.Count() != 2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2)
|
|
}
|
|
}
|
|
|
|
// Tests that if a transaction is dropped from the current pending pool (e.g. out
|
|
// of fund), all consecutive (still valid, but not executable) transactions are
|
|
// postponed back into the future queue to prevent broadcasting them.
|
|
func TestTransactionPostponing(t *testing.T) {
|
|
// Create the pool to test the postponing with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create two test accounts to produce different gap profiles with
|
|
keys := make([]*ecdsa.PrivateKey, 2)
|
|
accs := make([]common.Address, len(keys))
|
|
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
|
|
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(50100))
|
|
}
|
|
// Add a batch consecutive pending transactions for validation
|
|
txs := []*types.Transaction{}
|
|
for i, key := range keys {
|
|
|
|
for j := 0; j < 100; j++ {
|
|
var tx *types.Transaction
|
|
if (i+j)%2 == 0 {
|
|
tx = transaction(uint64(j), 25000, key)
|
|
} else {
|
|
tx = transaction(uint64(j), 50000, key)
|
|
}
|
|
txs = append(txs, tx)
|
|
}
|
|
}
|
|
for i, err := range pool.AddRemotesSync(txs) {
|
|
if err != nil {
|
|
t.Fatalf("tx %d: failed to add transactions: %v", i, err)
|
|
}
|
|
}
|
|
// Check that pre and post validations leave the pool as is
|
|
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
|
|
}
|
|
if pool.all.Count() != len(txs) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
|
|
}
|
|
if pool.all.Count() != len(txs) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
|
|
}
|
|
// Reduce the balance of the account, and check that transactions are reorganised
|
|
for _, addr := range accs {
|
|
pool.currentState.AddBalance(addr, uint256.NewInt().Neg(u256.Num1))
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
// The first account's first transaction remains valid, check that subsequent
|
|
// ones are either filtered out, or queued up for later.
|
|
if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
|
|
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
|
|
}
|
|
for i, tx := range txs[1:100] {
|
|
if i%2 == 1 {
|
|
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
|
|
}
|
|
} else {
|
|
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
|
|
}
|
|
}
|
|
}
|
|
// The second account's first transaction got invalid, check that all transactions
|
|
// are either filtered out, or queued up for later.
|
|
if pool.pending[accs[1]] != nil {
|
|
t.Errorf("invalidated account still has pending transactions")
|
|
}
|
|
for i, tx := range txs[100:] {
|
|
if i%2 == 1 {
|
|
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
|
|
}
|
|
} else {
|
|
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
|
|
}
|
|
}
|
|
}
|
|
if pool.all.Count() != len(txs)/2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction pool has both executable and non-executable
|
|
// transactions from an origin account, filling the nonce gap moves all queued
|
|
// ones into the pending pool.
|
|
func TestTransactionGapFilling(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a pending and a queued transaction with a nonce-gap in between
|
|
pool.AddRemotesSync([]*types.Transaction{
|
|
transaction(0, 100000, key),
|
|
transaction(2, 100000, key),
|
|
})
|
|
pending, queued := pool.Stats()
|
|
if pending != 1 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Fill the nonce gap and ensure all transactions become pending
|
|
if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil {
|
|
t.Fatalf("failed to add gapped transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("gap-filling event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to a single account goes above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
func TestTransactionQueueAccountLimiting(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
|
|
if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
|
|
}
|
|
if i <= testTxPoolConfig.AccountQueue {
|
|
if pool.queue[account].Len() != int(i) {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
|
|
}
|
|
} else {
|
|
if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
|
|
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
|
|
}
|
|
}
|
|
}
|
|
if pool.all.Count() != int(testTxPoolConfig.AccountQueue) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
//
|
|
// This logic should not hold for local transactions, unless the local tracking
|
|
// mechanism is disabled.
|
|
func TestTransactionQueueGlobalLimiting(t *testing.T) {
|
|
testTransactionQueueGlobalLimiting(t, false)
|
|
}
|
|
func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
|
|
testTransactionQueueGlobalLimiting(t, true)
|
|
}
|
|
|
|
func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
|
|
// Create the pool to test the limit enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.NoLocals = nolocals
|
|
config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a number of test accounts and fund them (last one will be the local)
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
local := keys[len(keys)-1]
|
|
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := make(types.Transactions, 0, 3*config.GlobalQueue)
|
|
for len(txs) < cap(txs) {
|
|
key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
|
|
txs = append(txs, transaction(nonces[addr]+1, 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
queued := 0
|
|
for addr, list := range pool.queue {
|
|
if list.Len() > int(config.AccountQueue) {
|
|
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
|
|
}
|
|
queued += list.Len()
|
|
}
|
|
if queued > int(config.GlobalQueue) {
|
|
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
|
|
}
|
|
// Generate a batch of transactions from the local account and import them
|
|
txs = txs[:0]
|
|
for i := uint64(0); i < 3*config.GlobalQueue; i++ {
|
|
txs = append(txs, transaction(i+1, 100000, local))
|
|
}
|
|
pool.AddLocals(txs)
|
|
|
|
// If locals are disabled, the previous eviction algorithm should apply here too
|
|
if nolocals {
|
|
queued := 0
|
|
for addr, list := range pool.queue {
|
|
if list.Len() > int(config.AccountQueue) {
|
|
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
|
|
}
|
|
queued += list.Len()
|
|
}
|
|
if queued > int(config.GlobalQueue) {
|
|
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
|
|
}
|
|
} else {
|
|
// Local exemptions are enabled, make sure the local account owned the queue
|
|
if len(pool.queue) != 1 {
|
|
t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
|
|
}
|
|
// Also ensure no local transactions are ever dropped, even if above global limits
|
|
if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
|
|
t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that if an account remains idle for a prolonged amount of time, any
|
|
// non-executable transactions queued up are dropped to prevent wasting resources
|
|
// on shuffling them around.
|
|
//
|
|
// This logic should not hold for local transactions, unless the local tracking
|
|
// mechanism is disabled.
|
|
func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) }
|
|
func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) {
|
|
testTransactionQueueTimeLimiting(t, true)
|
|
}
|
|
|
|
func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
|
|
// Reduce the eviction interval to a testable amount
|
|
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
|
|
evictionInterval = time.Millisecond * 100
|
|
|
|
// Create the pool to test the non-expiration enforcement
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.Lifetime = time.Second
|
|
config.NoLocals = nolocals
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create two test accounts to ensure remotes expire but locals do not
|
|
local, _ := crypto.GenerateKey()
|
|
remote, _ := crypto.GenerateKey()
|
|
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
|
|
// Add the two transactions and ensure they both are queued up
|
|
if err := pool.AddLocal(pricedTransaction(1, 100000, u256.Num1, local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num1, remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Allow the eviction interval to run
|
|
time.Sleep(2 * evictionInterval)
|
|
|
|
// Transactions should not be evicted from the queue yet since lifetime duration has not passed
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains
|
|
time.Sleep(2 * config.Lifetime)
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if nolocals {
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
} else {
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that even if the transaction count belonging to a single account goes
|
|
// above some threshold, as long as the transactions are executable, they are
|
|
// accepted.
|
|
func TestTransactionPendingLimiting(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
|
|
if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if pool.pending[account].Len() != int(i)+1 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
|
|
}
|
|
}
|
|
if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5)
|
|
}
|
|
if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil {
|
|
t.Fatalf("event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, the higher transactions are dropped to prevent DOS
|
|
// attacks.
|
|
func TestTransactionPendingGlobalLimiting(t *testing.T) {
|
|
// Create the pool to test the limit enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = config.AccountSlots * 10
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending := 0
|
|
for _, list := range pool.pending {
|
|
pending += list.Len()
|
|
}
|
|
if pending > int(config.GlobalSlots) {
|
|
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Test the limit on transaction size is enforced correctly.
|
|
// This test verifies every transaction having allowed size
|
|
// is added to the pool, and longer transactions are rejected.
|
|
func TestTransactionAllowedTxSize(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000000))
|
|
|
|
// Compute maximal data size for transactions (lower bound).
|
|
//
|
|
// It is assumed the fields in the transaction (except of the data) are:
|
|
// - nonce <= 32 bytes
|
|
// - gasPrice <= 32 bytes
|
|
// - gasLimit <= 32 bytes
|
|
// - recipient == 20 bytes
|
|
// - value <= 32 bytes
|
|
// - signature == 65 bytes
|
|
// All those fields are summed up to at most 213 bytes.
|
|
baseSize := uint64(213)
|
|
dataSize := txMaxSize - baseSize
|
|
|
|
// Try adding a transaction with maximal allowed size
|
|
tx := pricedDataTransaction(0, pool.currentMaxGas, u256.Num1, key, dataSize)
|
|
if err := pool.addRemoteSync(tx); err != nil {
|
|
t.Fatalf("failed to add transaction of size %d, close to maximal: %v", int(tx.Size()), err)
|
|
}
|
|
// Try adding a transaction with random allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(1, pool.currentMaxGas, u256.Num1, key, uint64(rand.Intn(int(dataSize))))); err != nil {
|
|
t.Fatalf("failed to add transaction of random allowed size: %v", err)
|
|
}
|
|
// Try adding a transaction of minimal not allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, u256.Num1, key, txMaxSize)); err == nil {
|
|
t.Fatalf("expected rejection on slightly oversize transaction")
|
|
}
|
|
// Try adding a transaction of random not allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, u256.Num1, key, dataSize+1+uint64(rand.Intn(int(10*txMaxSize))))); err == nil {
|
|
t.Fatalf("expected rejection on oversize transaction")
|
|
}
|
|
// Run some sanity checks on the pool internals
|
|
pending, queued := pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if transactions start being capped, transactions are also removed from 'all'
|
|
func TestTransactionCapClearsFromAll(t *testing.T) {
|
|
// Create the pool to test the limit enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.AccountSlots = 2
|
|
config.AccountQueue = 2
|
|
config.GlobalSlots = 8
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a number of test accounts and fund them
|
|
key, _ := crypto.GenerateKey()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(addr, uint256.NewInt().SetUint64(1000000))
|
|
|
|
txs := types.Transactions{}
|
|
for j := 0; j < int(config.GlobalSlots)*2; j++ {
|
|
txs = append(txs, transaction(uint64(j), 100000, key))
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotes(txs)
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, if they are under the minimum guaranteed slot count then
|
|
// the transactions are still kept.
|
|
func TestTransactionPendingMinimumAllowance(t *testing.T) {
|
|
// Create the pool to test the limit enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 1
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(config.AccountSlots)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
for addr, list := range pool.pending {
|
|
if list.Len() != int(config.AccountSlots) {
|
|
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that setting the transaction pool gas price to a higher value correctly
|
|
// discards everything cheaper than that and moves any gapped transactions back
|
|
// from the pending pool to the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolRepricing(t *testing.T) {
|
|
// Create the pool to test the pricing enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, u256.Num2, keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, u256.Num1, keys[0]))
|
|
txs = append(txs, pricedTransaction(2, 100000, u256.Num2, keys[0]))
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[1]))
|
|
txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[1]))
|
|
txs = append(txs, pricedTransaction(2, 100000, u256.Num2, keys[1]))
|
|
|
|
txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[2]))
|
|
txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[2]))
|
|
txs = append(txs, pricedTransaction(3, 100000, u256.Num2, keys[2]))
|
|
|
|
ltx := pricedTransaction(0, 100000, u256.Num1, keys[3])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotesSync(txs)
|
|
pool.AddLocal(ltx)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 7 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
|
|
}
|
|
if queued != 3 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
|
|
}
|
|
if err := validateEvents(events, 7); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Reprice the pool and check that underpriced transactions get dropped
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 5 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Check that we can't add the old transactions back
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num1, keys[0])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num1, keys[1])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, u256.Num1, keys[2])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// However we can add local underpriced transactions
|
|
tx := pricedTransaction(1, 100000, u256.Num1, keys[3])
|
|
if err := pool.AddLocal(tx); err != nil {
|
|
t.Fatalf("failed to add underpriced local transaction: %v", err)
|
|
}
|
|
if pending, _ = pool.Stats(); pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("post-reprice local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// And we can fill gaps with properly priced transactions
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, u256.Num2, keys[0])); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num2, keys[1])); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, u256.Num2, keys[2])); err != nil {
|
|
t.Fatalf("failed to add queued transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 5); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that setting the transaction pool gas price to a higher value does not
|
|
// remove local transactions.
|
|
func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
|
|
// Create the pool to test the pricing enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 3)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000*1000000))
|
|
}
|
|
// Create transaction (both pending and queued) with a linearly growing gasprice
|
|
for i := uint64(0); i < 500; i++ {
|
|
// Add pending transaction.
|
|
pendingTx := pricedTransaction(i, 100000, uint256.NewInt().SetUint64(i), keys[2])
|
|
if err := pool.AddLocal(pendingTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
// Add queued transaction.
|
|
queuedTx := pricedTransaction(i+501, 100000, uint256.NewInt().SetUint64(i), keys[2])
|
|
if err := pool.AddLocal(queuedTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
pending, queued := pool.Stats()
|
|
expPending, expQueued := 500, 500
|
|
validate := func() {
|
|
pending, queued = pool.Stats()
|
|
if pending != expPending {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending)
|
|
}
|
|
if queued != expQueued {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued)
|
|
}
|
|
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
validate()
|
|
|
|
// Reprice the pool and check that nothing is dropped
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
validate()
|
|
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
pool.SetGasPrice(big.NewInt(4))
|
|
pool.SetGasPrice(big.NewInt(8))
|
|
pool.SetGasPrice(big.NewInt(100))
|
|
validate()
|
|
}
|
|
|
|
// Tests that when the pool reaches its global transaction limit, underpriced
|
|
// transactions are gradually shifted out for more expensive ones and any gapped
|
|
// pending transactions are moved into the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolUnderpricing(t *testing.T) {
|
|
// Create the pool to test the pricing enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 2
|
|
config.GlobalQueue = 2
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, u256.Num2, keys[0]))
|
|
|
|
txs = append(txs, pricedTransaction(1, 100000, u256.Num1, keys[1]))
|
|
|
|
ltx := pricedTransaction(0, 100000, u256.Num1, keys[2])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotes(txs)
|
|
pool.AddLocal(ltx)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 3); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding an underpriced transaction on block limit fails
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(1), keys[1])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
// Ensure that adding high priced transactions drops cheap ones, but not own
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(3, 100000, uint256.NewInt().SetUint64(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("additional event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding local transactions can push out even higher priced ones
|
|
ltx = pricedTransaction(1, 100000, u256.Num0, keys[2])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to append underpriced local transaction: %v", err)
|
|
}
|
|
ltx = pricedTransaction(0, 100000, u256.Num0, keys[3])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to add new underpriced local transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that more expensive transactions push out cheap ones from the pool, but
|
|
// without producing instability by creating gaps that start jumping transactions
|
|
// back and forth between queued/pending.
|
|
func TestTransactionPoolStableUnderpricing(t *testing.T) {
|
|
// Create the pool to test the pricing enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 128
|
|
config.GlobalQueue = 0
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 2)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Fill up the entire queue with the same transaction price points
|
|
txs := types.Transactions{}
|
|
for i := uint64(0); i < config.GlobalSlots; i++ {
|
|
txs = append(txs, pricedTransaction(i, 100000, u256.Num1, keys[0]))
|
|
}
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != int(config.GlobalSlots) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, int(config.GlobalSlots)); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(3), keys[1])); err != nil {
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != int(config.GlobalSlots) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("additional event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that the pool rejects duplicate transactions.
|
|
func TestTransactionDeduplication(t *testing.T) {
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create a test account to add transactions with
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
|
|
// Create a batch of transactions and add a few of them
|
|
txs := make([]*types.Transaction, 16)
|
|
for i := 0; i < len(txs); i++ {
|
|
txs[i] = pricedTransaction(uint64(i), 100000, u256.Num1, key)
|
|
}
|
|
var firsts []*types.Transaction
|
|
for i := 0; i < len(txs); i += 2 {
|
|
firsts = append(firsts, txs[i])
|
|
}
|
|
errs := pool.AddRemotesSync(firsts)
|
|
if len(errs) != len(firsts) {
|
|
t.Fatalf("first add mismatching result count: have %d, want %d", len(errs), len(firsts))
|
|
}
|
|
for i, err := range errs {
|
|
if err != nil {
|
|
t.Errorf("add %d failed: %v", i, err)
|
|
}
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 1 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
|
|
}
|
|
if queued != len(txs)/2-1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, len(txs)/2-1)
|
|
}
|
|
// Try to add all of them now and ensure previous ones error out as knowns
|
|
errs = pool.AddRemotesSync(txs)
|
|
if len(errs) != len(txs) {
|
|
t.Fatalf("all add mismatching result count: have %d, want %d", len(errs), len(txs))
|
|
}
|
|
for i, err := range errs {
|
|
if i%2 == 0 && err == nil {
|
|
t.Errorf("add %d succeeded, should have failed as known", i)
|
|
}
|
|
if i%2 == 1 && err != nil {
|
|
t.Errorf("add %d failed: %v", i, err)
|
|
}
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != len(txs) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, len(txs))
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that the pool rejects replacement transactions that don't meet the minimum
|
|
// price bump required.
|
|
func TestTransactionReplacement(t *testing.T) {
|
|
// Create the pool to test the pricing enforcement with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a test account to add transactions with
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
|
|
// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
|
|
price := uint64(100)
|
|
threshold := (price * (100 + testTxPoolConfig.PriceBump)) / 100
|
|
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, u256.Num1, key)); err != nil {
|
|
t.Fatalf("failed to add original cheap pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100001, u256.Num1, key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, u256.Num2, key)); err != nil {
|
|
t.Fatalf("failed to replace original cheap pending transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("cheap replacement event firing failed: %v", err)
|
|
}
|
|
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(price), key)); err != nil {
|
|
t.Fatalf("failed to add original proper pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100001, uint256.NewInt().SetUint64(threshold-1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, uint256.NewInt().SetUint64(threshold), key)); err != nil {
|
|
t.Fatalf("failed to replace original proper pending transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("proper replacement event firing failed: %v", err)
|
|
}
|
|
|
|
// Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(1), key)); err != nil {
|
|
t.Fatalf("failed to add original cheap queued transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100001, uint256.NewInt().SetUint64(1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(2), key)); err != nil {
|
|
t.Fatalf("failed to replace original cheap queued transaction: %v", err)
|
|
}
|
|
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(price), key)); err != nil {
|
|
t.Fatalf("failed to add original proper queued transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100001, uint256.NewInt().SetUint64(threshold-1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, uint256.NewInt().SetUint64(threshold), key)); err != nil {
|
|
t.Fatalf("failed to replace original proper queued transaction: %v", err)
|
|
}
|
|
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("queued replacement event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that local transactions are journaled to disk, but remote transactions
|
|
// get discarded between restarts.
|
|
func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) }
|
|
func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) }
|
|
|
|
func testTransactionJournaling(t *testing.T, nolocals bool) {
|
|
// Create a temporary file for the journal
|
|
file, err := ioutil.TempFile("", "")
|
|
if err != nil {
|
|
t.Fatalf("failed to create temporary journal: %v", err)
|
|
}
|
|
journal := file.Name()
|
|
defer os.Remove(journal)
|
|
|
|
// Clean up the temporary file, we only need the path for now
|
|
file.Close()
|
|
os.Remove(journal)
|
|
|
|
// Create the original pool to inject transaction into the journal
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
config := testTxPoolConfig
|
|
config.NoLocals = nolocals
|
|
config.Journal = journal
|
|
config.Rejournal = time.Second
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create two test accounts to ensure remotes expire but locals do not
|
|
local, _ := crypto.GenerateKey()
|
|
remote, _ := crypto.GenerateKey()
|
|
|
|
stateWriter := state.NewPlainStateWriter(db, nil, 1)
|
|
ibs := state.New(state.NewPlainStateReader(db))
|
|
ibs.AddBalance(crypto.PubkeyToAddress(local.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
ibs.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), uint256.NewInt().SetUint64(1000000000))
|
|
if err := ibs.CommitBlock(context.Background(), stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Add three local and a remote transactions and ensure they are queued up
|
|
if err := pool.AddLocal(pricedTransaction(0, 100000, u256.Num1, local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddLocal(pricedTransaction(1, 100000, u256.Num1, local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddLocal(pricedTransaction(2, 100000, u256.Num1, local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, u256.Num1, remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 4 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
|
|
stateWriter = state.NewPlainStateWriter(db, nil, 1)
|
|
ibs = state.New(state.NewPlainStateReader(db))
|
|
ibs.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
|
|
if err := ibs.CommitBlock(context.Background(), stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
txCacher = NewTxSenderCacher(runtime.NumCPU())
|
|
pool = NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
|
|
pending, queued = pool.Stats()
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if nolocals {
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
} else {
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Bump the nonce temporarily and ensure the newly invalidated transaction is removed
|
|
stateWriter = state.NewPlainStateWriter(db, nil, 1)
|
|
ibs = state.New(state.NewPlainStateReader(db))
|
|
ibs.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
|
|
if err := ibs.CommitBlock(context.Background(), stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
pool.ResetHead(1000000000, 1)
|
|
//<-pool.requestReset(nil, nil)
|
|
time.Sleep(2 * config.Rejournal)
|
|
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
|
|
stateWriter = state.NewPlainStateWriter(db, nil, 1)
|
|
ibs = state.New(state.NewPlainStateReader(db))
|
|
ibs.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
|
|
if err := ibs.CommitBlock(context.Background(), stateWriter); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
txCacher = NewTxSenderCacher(runtime.NumCPU())
|
|
pool = NewTxPool(config, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if nolocals {
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
} else {
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestTransactionStatusCheck tests that the pool can correctly retrieve the
|
|
// pending status of individual transactions.
|
|
func TestTransactionStatusCheck(t *testing.T) {
|
|
// Create the pool to test the status retrievals with
|
|
db := ethdb.NewMemDatabase()
|
|
defer db.Close()
|
|
|
|
txCacher := NewTxSenderCacher(runtime.NumCPU())
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, db, txCacher)
|
|
if err := pool.Start(1000000000, 0); err != nil {
|
|
t.Fatalf("starting tx pool: %v", err)
|
|
}
|
|
defer func() {
|
|
txCacher.Close()
|
|
pool.Stop()
|
|
}()
|
|
|
|
// Create the test accounts to check various transaction statuses with
|
|
keys := make([]*ecdsa.PrivateKey, 3)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), uint256.NewInt().SetUint64(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[0])) // Pending only
|
|
txs = append(txs, pricedTransaction(0, 100000, u256.Num1, keys[1])) // Pending and queued
|
|
txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[1]))
|
|
txs = append(txs, pricedTransaction(2, 100000, u256.Num1, keys[2])) // Queued only
|
|
|
|
// Import the transaction and ensure they are correctly added
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Retrieve the status of each transaction and validate them
|
|
hashes := make([]common.Hash, len(txs))
|
|
for i, tx := range txs {
|
|
hashes[i] = tx.Hash()
|
|
}
|
|
hashes = append(hashes, common.Hash{})
|
|
|
|
statuses := pool.Status(hashes)
|
|
expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown}
|
|
|
|
for i := 0; i < len(statuses); i++ {
|
|
if statuses[i] != expect[i] {
|
|
t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i])
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test the transaction slots consumption is computed correctly
|
|
func TestTransactionSlotCount(t *testing.T) {
|
|
key, _ := crypto.GenerateKey()
|
|
|
|
// Check that an empty transaction consumes a single slot
|
|
smallTx := pricedDataTransaction(0, 0, u256.Num0, key, 0)
|
|
if slots := numSlots(smallTx); slots != 1 {
|
|
t.Fatalf("small transactions slot count mismatch: have %d want %d", slots, 1)
|
|
}
|
|
// Check that a large transaction consumes the correct number of slots
|
|
bigTx := pricedDataTransaction(0, 0, u256.Num0, key, uint64(10*txSlotSize))
|
|
if slots := numSlots(bigTx); slots != 11 {
|
|
t.Fatalf("big transactions slot count mismatch: have %d want %d", slots, 11)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of validating the contents of the pending queue of the
|
|
// transaction pool.
|
|
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
|
|
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
|
|
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
|
|
|
|
func benchmarkPendingDemotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(i), 100000, key)
|
|
pool.promoteTx(account, tx.Hash(), tx)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.demoteUnexecutables()
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of scheduling the contents of the future queue of the
|
|
// transaction pool.
|
|
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
|
|
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
|
|
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
|
|
|
|
func benchmarkFuturePromotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(1+i), 100000, key)
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.promoteExecutables(nil)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of batched transaction insertion.
|
|
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, false) }
|
|
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, false) }
|
|
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, false) }
|
|
|
|
func BenchmarkPoolBatchLocalInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, true) }
|
|
func BenchmarkPoolBatchLocalInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, true) }
|
|
func BenchmarkPoolBatchLocalInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, true) }
|
|
|
|
func benchmarkPoolBatchInsert(b *testing.B, size int, local bool) {
|
|
// Generate a batch of transactions to enqueue into the pool
|
|
pool, key, clear := setupTxPool()
|
|
defer clear()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, uint256.NewInt().SetUint64(1000000))
|
|
|
|
batches := make([]types.Transactions, b.N)
|
|
for i := 0; i < b.N; i++ {
|
|
batches[i] = make(types.Transactions, size)
|
|
for j := 0; j < size; j++ {
|
|
batches[i][j] = transaction(uint64(size*i+j), 100000, key)
|
|
}
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for _, batch := range batches {
|
|
if local {
|
|
pool.AddLocals(batch)
|
|
} else {
|
|
pool.AddRemotes(batch)
|
|
}
|
|
}
|
|
}
|