erigon-pulse/core/state/database_test.go
Alex Sharov ecc94a63f0
DupSort for Plain and Hashed state buckets (behind feature flags) (#854)
* return error from rawdb

* squash

* v14

* improve performance of put

* clean

* clean

* hide feature behind ENV variable

* cleanup

* cleanup

* disable ipc and make Readme less confusing (people thought points are depend on each-other)

* fix test

* cleanup

* cleanup
2020-08-02 12:53:08 +01:00

1588 lines
52 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state_test
import (
"bytes"
"context"
"errors"
"fmt"
"math/big"
"runtime"
"testing"
"github.com/davecgh/go-spew/spew"
"github.com/holiman/uint256"
"github.com/stretchr/testify/assert"
"github.com/ledgerwatch/turbo-geth/accounts/abi/bind"
"github.com/ledgerwatch/turbo-geth/accounts/abi/bind/backends"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/dbutils"
"github.com/ledgerwatch/turbo-geth/consensus/ethash"
"github.com/ledgerwatch/turbo-geth/core"
"github.com/ledgerwatch/turbo-geth/core/rawdb"
"github.com/ledgerwatch/turbo-geth/core/state"
"github.com/ledgerwatch/turbo-geth/core/state/contracts"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/core/vm"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/ethdb"
"github.com/ledgerwatch/turbo-geth/params"
)
// Create revival problem
func TestCreate2Revive(t *testing.T) {
// Configure and generate a sample block chain
db := ethdb.NewMemDatabase()
defer db.Close()
var (
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
signer = types.HomesteadSigner{}
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var revive *contracts.Revive
// Change this address whenever you make any changes in the code of the revive contract in
// contracts/revive.sol
var create2address = common.HexToAddress("e70fd65144383e1189bd710b1e23b61e26315ff4")
// There are 4 blocks
// In the first block, we deploy the "factory" contract Revive, which can create children contracts via CREATE2 opcode
// In the second block, we create the first child contract
// In the third block, we cause the first child contract to selfdestruct
// In the forth block, we create the second child contract, and we expect it to have a "clean slate" of storage,
// i.e. without any storage items that "inherited" from the first child contract by mistake
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, revive, err = contracts.DeployRevive(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = revive.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 2:
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, uint256.NewInt(), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 3:
tx, err = revive.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// BLOCK 2
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
var it *contracts.ReviveDeployEventIterator
it, err = revive.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 2", create2address.String())
}
// We expect number 0x42 in the position [2], because it is the block number 2
key2 := common.BigToHash(big.NewInt(2))
var check2 uint256.Int
st.GetState(create2address, &key2, &check2)
if check2.Uint64() != 0x42 {
t.Errorf("expected 0x42 in position 2, got: %x", check2.Uint64())
}
// BLOCK 3
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[2]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if st.Exist(create2address) {
t.Error("expected create2address to be self-destructed at the block 3", create2address.String())
}
// BLOCK 4
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[3]}); err != nil {
t.Fatal(err)
}
it, err = revive.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 2", create2address.String())
}
// We expect number 0x42 in the position [4], because it is the block number 4
key4 := common.BigToHash(big.NewInt(4))
var check4 uint256.Int
st.GetState(create2address, &key4, &check4)
if check4.Uint64() != 0x42 {
t.Errorf("expected 0x42 in position 4, got: %x", check4.Uint64())
}
// We expect number 0x0 in the position [2], because it is the block number 4
st.GetState(create2address, &key2, &check2)
if !check2.IsZero() {
t.Errorf("expected 0x0 in position 2, got: %x", check2)
}
}
// Polymorthic contracts via CREATE2
func TestCreate2Polymorth(t *testing.T) {
// Configure and generate a sample block chain
db := ethdb.NewMemDatabase()
defer db.Close()
var (
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
signer = types.HomesteadSigner{}
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var poly *contracts.Poly
// Change this address whenever you make any changes in the code of the poly contract in
// contracts/poly.sol
var create2address = common.HexToAddress("c66aa74c220476f244b7f45897a124d1a01ca8a8")
// There are 5 blocks
// In the first block, we deploy the "factory" contract Poly, which can create children contracts via CREATE2 opcode
// In the second block, we create the first child contract
// In the third block, we cause the first child contract to selfdestruct
// In the forth block, we create the second child contract
// In the 5th block, we delete and re-create the child contract twice
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 5, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, poly, err = contracts.DeployPoly(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = poly.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 2:
// Trigger self-destruct
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, uint256.NewInt(), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 3:
tx, err = poly.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 4:
// Trigger self-destruct
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, uint256.NewInt(), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
// Recreate in the same block
tx, err = poly.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
// Trigger self-destruct
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, uint256.NewInt(), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
// Recreate in the same block
tx, err = poly.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// BLOCK 2
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
var it *contracts.PolyDeployEventIterator
it, err = poly.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 2", create2address.String())
}
if !bytes.Equal(st.GetCode(create2address), common.FromHex("6002ff")) {
t.Errorf("Expected CREATE2 deployed code 6002ff, got %x", st.GetCode(create2address))
}
if st.GetIncarnation(create2address) != 1 {
t.Errorf("expected incarnation 1, got %d", st.GetIncarnation(create2address))
}
// BLOCK 3
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[2]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if st.Exist(create2address) {
t.Error("expected create2address to be self-destructed at the block 3", create2address.String())
}
// BLOCK 4
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[3]}); err != nil {
t.Fatal(err)
}
it, err = poly.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 4", create2address.String())
}
if !bytes.Equal(st.GetCode(create2address), common.FromHex("6004ff")) {
t.Errorf("Expected CREATE2 deployed code 6004ff, got %x", st.GetCode(create2address))
}
if st.GetIncarnation(create2address) != 2 {
t.Errorf("expected incarnation 2, got %d", st.GetIncarnation(create2address))
}
// BLOCK 5
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[4]}); err != nil {
t.Fatal(err)
}
it, err = poly.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 5", create2address.String())
}
if !bytes.Equal(st.GetCode(create2address), common.FromHex("6005ff")) {
t.Errorf("Expected CREATE2 deployed code 6005ff, got %x", st.GetCode(create2address))
}
if st.GetIncarnation(create2address) != 4 {
t.Errorf("expected incarnation 4 (two self-destructs and two-recreations within a block), got %d", st.GetIncarnation(create2address))
}
}
func TestReorgOverSelfDestruct(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var selfDestruct *contracts.Selfdestruct
// Here we generate 3 blocks, two of which (the one with "Change" invocation and "Destruct" invocation will be reverted during the reorg)
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 3, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, selfDestruct, err = contracts.DeploySelfdestruct(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = selfDestruct.Change(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 2:
tx, err = selfDestruct.Destruct(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
// Create a longer chain, with 4 blocks (with higher total difficulty) that reverts the change of stroage self-destruction of the contract
contractBackendLonger := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOptsLonger := bind.NewKeyedTransactor(key)
transactOptsLonger.GasLimit = 1000000
longerBlocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
_, tx, _, err = contracts.DeploySelfdestruct(transactOptsLonger, contractBackendLonger)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackendLonger.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate long blocks")
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// Remember value of field "x" (storage item 0) after the first block, to check after rewinding
var key0 common.Hash
var correctValueX uint256.Int
st.GetState(contractAddress, &key0, &correctValueX)
// BLOCKS 2 + 3
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[1], blocks[2]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist at the block 3", contractAddress.String())
}
fmt.Println("-------Reorg")
// REORG of block 2 and 3, and insert new (empty) BLOCK 2, 3, and 4
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{longerBlocks[1], longerBlocks[2], longerBlocks[3]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 4", contractAddress.String())
}
// Reload blockchain from the database
txCacher1 := core.NewTxSenderCacher(runtime.NumCPU())
blockchain1, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher1)
if err != nil {
t.Fatal(err)
}
defer blockchain1.Stop()
st = state.New(state.NewDbState(db.KV(), blockchain1.CurrentBlock().NumberU64()))
var valueX uint256.Int
st.GetState(contractAddress, &key0, &valueX)
if valueX != correctValueX {
t.Fatalf("storage value has changed after reorg: %x, expected %x", valueX, correctValueX)
}
}
func TestReorgOverStateChange(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var selfDestruct *contracts.Selfdestruct
// Here we generate 3 blocks, two of which (the one with "Change" invocation and "Destruct" invocation will be reverted during the reorg)
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 2, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, selfDestruct, err = contracts.DeploySelfdestruct(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = selfDestruct.Change(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
fmt.Println("commited i=", i)
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
// Create a longer chain, with 4 blocks (with higher total difficulty) that reverts the change of stroage self-destruction of the contract
contractBackendLonger := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOptsLonger := bind.NewKeyedTransactor(key)
transactOptsLonger.GasLimit = 1000000
longerBlocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 3, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
_, tx, _, err = contracts.DeploySelfdestruct(transactOptsLonger, contractBackendLonger)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackendLonger.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate longer blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// Remember value of field "x" (storage item 0) after the first block, to check after rewinding
var key0 common.Hash
var correctValueX uint256.Int
st.GetState(contractAddress, &key0, &correctValueX)
fmt.Println("Insert block 2")
// BLOCK 2
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
fmt.Println("Insert long blocks 2,3")
// REORG of block 2 and 3, and insert new (empty) BLOCK 2, 3, and 4
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{longerBlocks[1], longerBlocks[2]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 4", contractAddress.String())
}
// Reload blockchain from the database
txCacher2 := core.NewTxSenderCacher(runtime.NumCPU())
blockchain2, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher2)
if err != nil {
t.Fatal(err)
}
defer blockchain2.Stop()
st = state.New(state.NewDbState(db.KV(), blockchain2.CurrentBlock().NumberU64()))
var valueX uint256.Int
st.GetState(contractAddress, &key0, &valueX)
if valueX != correctValueX {
t.Fatalf("storage value has changed after reorg: %x, expected %x", valueX, correctValueX)
}
}
func TestDatabaseStateChangeDBSizeDebug(t *testing.T) {
t.Skip()
// Configure and generate a sample block chain
numOfContracts := 10
txPerBlock := 10
numOfBlocks := 10
var addresses []common.Address
var transactOpts []*bind.TransactOpts
for i := 0; i < numOfContracts; i++ {
key, err := crypto.GenerateKey()
if err != nil {
t.Fatal(err)
}
addresses = append(addresses, crypto.PubkeyToAddress(key.PublicKey))
transactOpt := bind.NewKeyedTransactor(key)
transactOpt.GasLimit = 1000000
transactOpts = append(transactOpts, transactOpt)
}
funds := big.NewInt(1000000000)
alloc := core.GenesisAlloc{}
for _, v := range addresses {
alloc[v] = core.GenesisAccount{Balance: funds}
}
var (
db = ethdb.NewMemDatabase()
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: alloc,
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
var selfDestruct = make([]*contracts.Selfdestruct, numOfContracts)
// Here we generate 3 blocks, two of which (the one with "Change" invocation and "Destruct" invocation will be reverted during the reorg)
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, numOfBlocks, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
for i := 0; i < numOfContracts; i++ {
_, tx, selfDestruct[i], err = contracts.DeploySelfdestruct(transactOpts[i], contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
case numOfBlocks - 1:
for i := 0; i < numOfContracts; i++ {
for j := 0; j < txPerBlock; j++ {
tx, err = selfDestruct[i].Destruct(transactOpts[i])
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
}
default:
for i := 0; i < numOfContracts; i++ {
for j := 0; j < txPerBlock; j++ {
tx, err = selfDestruct[i].Change(transactOpts[i])
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
}
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
if _, err = blockchain.InsertChain(context.Background(), blocks); err != nil {
t.Fatal(err)
}
stats := BucketsStats{}
fmt.Println("==========================ACCOUNT===========================")
err = blockchain.ChainDb().Walk(dbutils.CurrentStateBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
if len(k) > 32 {
return true, nil
}
acc := &accounts.Account{}
innerErr := acc.DecodeForStorage(v)
if innerErr != nil {
t.Fatal(innerErr)
}
stats.Accounts += uint64(len(v))
return true, nil
})
if err != nil {
fmt.Println(err)
}
fmt.Println("==========================ACCOUNTHISTORY===========================")
err = blockchain.ChainDb().Walk(dbutils.AccountsHistoryBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
stats.HAT += uint64(len(v))
return true, nil
})
if err != nil {
t.Fatal(err)
}
fmt.Println("==========================STORAGE===========================")
err = blockchain.ChainDb().Walk(dbutils.CurrentStateBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
stats.Storage += uint64(len(v))
return true, nil
})
if err != nil {
t.Fatal(err)
}
fmt.Println("==========================StorageHISTORY===========================")
err = blockchain.ChainDb().Walk(dbutils.StorageHistoryBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
stats.HST += uint64(len(v))
return true, nil
})
if err != nil {
t.Fatal(err)
}
fmt.Println("==========================CHANGESET===========================")
err = blockchain.ChainDb().Walk(dbutils.AccountChangeSetBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
stats.ChangeSetHAT += uint64(len(v))
return true, nil
})
if err != nil {
t.Fatal(err)
}
err = blockchain.ChainDb().Walk(dbutils.StorageChangeSetBucket, []byte{}, 0, func(k []byte, v []byte) (b bool, e error) {
stats.ChangeSetHST += uint64(len(v))
return true, nil
})
if err != nil {
t.Fatal(err)
}
spew.Dump(stats)
spew.Dump(stats.Size())
}
type BucketsStats struct {
Accounts uint64
Storage uint64
ChangeSetHAT uint64
ChangeSetHST uint64
HAT uint64
HST uint64
}
func (b BucketsStats) Size() uint64 {
return b.ChangeSetHST + b.ChangeSetHAT + b.HST + b.Storage + b.HAT + b.Accounts
}
func TestCreateOnExistingStorage(t *testing.T) {
// Configure and generate a sample block chain
db := ethdb.NewMemDatabase()
defer db.Close()
var (
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
// Address of the contract that will be deployed
contractAddr = common.HexToAddress("0x3a220f351252089d385b29beca14e27f204c296a")
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
// Pre-existing storage item in an account without code
contractAddr: {Balance: funds, Storage: map[common.Hash]common.Hash{{}: common.HexToHash("0x42")}},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
// There is one block, and it ends up deploying Revive contract (could be any other contract, it does not really matter)
// On the address contractAddr, where there is a storage item in the genesis, but no contract code
// We expect the pre-existing storage items to be removed by the deployment
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, _, err = contracts.DeployRevive(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if contractAddress != contractAddr {
t.Errorf("expected contract address to be %x, got: %x", contractAddr, contractAddress)
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
var key0 common.Hash
var check0 uint256.Int
st.GetState(contractAddress, &key0, &check0)
if !check0.IsZero() {
t.Errorf("expected 0x00 in position 0, got: %x", check0)
}
}
func TestReproduceCrash(t *testing.T) {
// This example was taken from Ropsten contract that used to cause a crash
// it is created in the block 598915 and then there are 3 transactions modifying
// its storage in the same block:
// 1. Setting storageKey 1 to a non-zero value
// 2. Setting storageKey 2 to a non-zero value
// 3. Setting both storageKey1 and storageKey2 to zero values
value0 := uint256.NewInt()
contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624")
storageKey1 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132541")
value1 := uint256.NewInt().SetUint64(0x016345785d8a0000)
storageKey2 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132542")
value2 := uint256.NewInt().SetUint64(0x58c00a51)
db := ethdb.NewMemDatabase()
tds := state.NewTrieDbState(common.Hash{}, db, 0)
tsw := tds.TrieStateWriter()
intraBlockState := state.New(tds)
ctx := context.Background()
// Start the 1st transaction
tds.StartNewBuffer()
intraBlockState.CreateAccount(contract, true)
if err := intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 2nd transaction
tds.StartNewBuffer()
intraBlockState.SetState(contract, &storageKey1, *value1)
if err := intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 3rd transaction
tds.StartNewBuffer()
intraBlockState.AddBalance(contract, uint256.NewInt().SetUint64(1000000000))
intraBlockState.SetState(contract, &storageKey2, *value2)
if err := intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 4th transaction - clearing both storage cells
tds.StartNewBuffer()
intraBlockState.SubBalance(contract, uint256.NewInt().SetUint64(1000000000))
intraBlockState.SetState(contract, &storageKey1, *value0)
intraBlockState.SetState(contract, &storageKey2, *value0)
if err := intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
if _, err := tds.ComputeTrieRoots(); err != nil {
t.Errorf("ComputeTrieRoots failed: %v", err)
}
// We expect the list of prunable entries to be empty
prunables := tds.TriePruningDebugDump()
if len(prunables) > 0 {
t.Errorf("Expected empty list of prunables, got:\n %s", prunables)
}
}
func TestEip2200Gas(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
PetersburgBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
IstanbulBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var selfDestruct *contracts.Selfdestruct
// Here we generate 1 block with 2 transactions, first creates a contract with some initial values in the
// It activates the SSTORE pricing rules specific to EIP-2200 (istanbul)
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 3, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, selfDestruct, err = contracts.DeploySelfdestruct(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
transactOpts.GasPrice = big.NewInt(1)
tx, err = selfDestruct.Change(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
balanceBefore := st.GetBalance(address)
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
balanceAfter := st.GetBalance(address)
gasSpent := big.NewInt(0).Sub(balanceBefore.ToBig(), balanceAfter.ToBig())
expectedGasSpent := big.NewInt(192245) // In the incorrect version, it is 179645
if gasSpent.Cmp(expectedGasSpent) != 0 {
t.Errorf("Expected gas spent: %d, got %d", expectedGasSpent, gasSpent)
}
}
//Create contract, drop trie, reload trie from disk and add block with contract call
func TestWrongIncarnation(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var changer *contracts.Changer
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 2, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, changer, err = contracts.DeployChanger(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = changer.Change(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
addrHash := crypto.Keccak256(contractAddress[:])
var acc accounts.Account
ok, err := rawdb.ReadAccount(db, common.BytesToHash(addrHash), &acc)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal(errors.New("acc not found"))
}
if acc.Incarnation != state.FirstContractIncarnation {
t.Fatal("Incorrect incarnation", acc.Incarnation)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// Reload blockchain from the database
txCacher1 := core.NewTxSenderCacher(runtime.NumCPU())
blockchain1, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher1)
if err != nil {
t.Fatal(err)
}
// BLOCKS 2
if _, err = blockchain1.InsertChain(context.Background(), types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
addrHash = crypto.Keccak256(contractAddress[:])
ok, err = rawdb.ReadAccount(db, common.BytesToHash(addrHash), &acc)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal(errors.New("acc not found"))
}
if acc.Incarnation != state.FirstContractIncarnation {
t.Fatal("Incorrect incarnation", acc.Incarnation)
}
var startKey [common.HashLength + 8 + common.HashLength]byte
copy(startKey[:], addrHash)
err = db.Walk(dbutils.CurrentStateBucket, startKey[:], 8*common.HashLength, func(k, v []byte) (bool, error) {
fmt.Printf("%x: %x\n", k, v)
return true, nil
})
if err != nil {
t.Fatal(err)
}
}
//create acc, deploy to it contract, reorg to state without contract
func TestWrongIncarnation2(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
signer = types.HomesteadSigner{}
)
knownContractAddress := common.HexToAddress("0xdb7d6ab1f17c6b31909ae466702703daef9269cf")
engine := ethash.NewFaker()
txCacher := core.NewTxSenderCacher(runtime.NumCPU())
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil, txCacher)
if err != nil {
t.Fatal(err)
}
defer blockchain.Stop()
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
blocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 2, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), knownContractAddress, uint256.NewInt().SetUint64(1000), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
contractAddress, tx, _, err = contracts.DeployChanger(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate blocks: %v", err)
}
if knownContractAddress != contractAddress {
t.Errorf("Expexted contractAddress: %x, got %x", knownContractAddress, contractAddress)
}
// Create a longer chain, with 4 blocks (with higher total difficulty) that reverts the change of stroage self-destruction of the contract
contractBackendLonger := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOptsLonger := bind.NewKeyedTransactor(key)
transactOptsLonger.GasLimit = 1000000
longerBlocks, _, err := core.GenerateChain(gspec.Config, genesis, engine, db, 3, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), knownContractAddress, uint256.NewInt().SetUint64(1000), 1000000, new(uint256.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackendLonger.SendTransaction(context.Background(), tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackendLonger.Commit()
}, false /* intermediateHashes */)
if err != nil {
t.Fatalf("generate longer blocks: %v", err)
}
st := state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(address) {
t.Error("expected account to exist")
}
// BLOCK 1
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
// BLOCKS 2
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
st = state.New(state.NewDbState(db.KV(), blockchain.CurrentBlock().NumberU64()))
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
addrHash := crypto.Keccak256(contractAddress[:])
var acc accounts.Account
ok, err := rawdb.ReadAccount(db, common.BytesToHash(addrHash), &acc)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal(errors.New("acc not found"))
}
if acc.Incarnation != state.FirstContractIncarnation {
t.Fatal("wrong incarnation")
}
// REORG of block 2 and 3, and insert new (empty) BLOCK 2, 3, and 4
if _, err = blockchain.InsertChain(context.Background(), types.Blocks{longerBlocks[1], longerBlocks[2]}); err != nil {
t.Fatal(err)
}
ok, err = rawdb.ReadAccount(db, common.BytesToHash(addrHash), &acc)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal(errors.New("acc not found"))
}
if acc.Incarnation != state.NonContractIncarnation {
t.Fatal("wrong incarnation", acc.Incarnation)
}
}
func TestChangeAccountCodeBetweenBlocks(t *testing.T) {
contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624")
db := ethdb.NewMemDatabase()
tds := state.NewTrieDbState(common.Hash{}, db, 0)
tsw := tds.TrieStateWriter()
intraBlockState := state.New(tds)
ctx := context.Background()
// Start the 1st transaction
tds.StartNewBuffer()
intraBlockState.CreateAccount(contract, true)
oldCode := []byte{0x01, 0x02, 0x03, 0x04}
intraBlockState.SetCode(contract, oldCode)
intraBlockState.AddBalance(contract, uint256.NewInt().SetUint64(1000000000))
if err := intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
tds.ComputeTrieRoots()
oldCodeHash := common.BytesToHash(crypto.Keccak256(oldCode))
trieCode, err := tds.ReadAccountCode(contract, oldCodeHash)
assert.NoError(t, err, "you can receive the new code")
assert.Equal(t, oldCode, trieCode, "new code should be received")
tds.StartNewBuffer()
newCode := []byte{0x04, 0x04, 0x04, 0x04}
intraBlockState.SetCode(contract, newCode)
if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
tds.ComputeTrieRoots()
newCodeHash := common.BytesToHash(crypto.Keccak256(newCode))
trieCode, err = tds.ReadAccountCode(contract, newCodeHash)
assert.NoError(t, err, "you can receive the new code")
assert.Equal(t, newCode, trieCode, "new code should be received")
}
// TestCacheCodeSizeSeparately makes sure that we don't store CodeNodes for code sizes
func TestCacheCodeSizeSeparately(t *testing.T) {
contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624")
root := common.HexToHash("0xb939e5bcf5809adfb87ab07f0795b05b95a1d64a90f0eddd0c3123ac5b433854")
db := ethdb.NewMemDatabase()
tds := state.NewTrieDbState(root, db, 0)
tds.SetResolveReads(true)
intraBlockState := state.New(tds)
ctx := context.Background()
// Start the 1st transaction
tds.StartNewBuffer()
intraBlockState.CreateAccount(contract, true)
code := []byte{0x01, 0x02, 0x03, 0x04}
intraBlockState.SetCode(contract, code)
intraBlockState.AddBalance(contract, uint256.NewInt().SetUint64(1000000000))
if err := intraBlockState.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
if err := intraBlockState.CommitBlock(ctx, tds.DbStateWriter()); err != nil {
t.Errorf("error committing block: %v", err)
}
if _, err := tds.ResolveStateTrie(false /* extractWitness */, true /* trace */); err != nil {
assert.NoError(t, err)
}
oldSize := tds.Trie().TrieSize()
tds.StartNewBuffer()
codeHash := common.BytesToHash(crypto.Keccak256(code))
codeSize, err := tds.ReadAccountCodeSize(contract, codeHash)
assert.NoError(t, err, "you can receive the new code")
assert.Equal(t, len(code), codeSize, "new code should be received")
if _, err = tds.ResolveStateTrie(false, false); err != nil {
assert.NoError(t, err)
}
newSize := tds.Trie().TrieSize()
assert.Equal(t, oldSize, newSize, "should not load codeNode, so the size shouldn't change")
tds.StartNewBuffer()
code2, err := tds.ReadAccountCode(contract, codeHash)
assert.NoError(t, err, "you can receive the new code")
assert.Equal(t, code, code2, "new code should be received")
if _, err = tds.ResolveStateTrie(false, false); err != nil {
assert.NoError(t, err)
}
newSize2 := tds.Trie().TrieSize()
assert.Equal(t, oldSize, newSize2-len(code), "should load codeNode when requesting new data ")
}
// TestCacheCodeSizeInTrie makes sure that we dont just read from the DB all the time
func TestCacheCodeSizeInTrie(t *testing.T) {
contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624")
root := common.HexToHash("0xb939e5bcf5809adfb87ab07f0795b05b95a1d64a90f0eddd0c3123ac5b433854")
db := ethdb.NewMemDatabase()
tds := state.NewTrieDbState(root, db, 0)
tds.SetResolveReads(true)
intraBlockState := state.New(tds)
ctx := context.Background()
// Start the 1st transaction
tds.StartNewBuffer()
intraBlockState.CreateAccount(contract, true)
code := []byte{0x01, 0x02, 0x03, 0x04}
intraBlockState.SetCode(contract, code)
intraBlockState.AddBalance(contract, uint256.NewInt().SetUint64(1000000000))
if err := intraBlockState.FinalizeTx(ctx, tds.TrieStateWriter()); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
if err := intraBlockState.CommitBlock(ctx, tds.DbStateWriter()); err != nil {
t.Errorf("error committing block: %v", err)
}
if _, err := tds.ResolveStateTrie(false, false); err != nil {
assert.NoError(t, err)
}
tds.StartNewBuffer()
codeHash := common.BytesToHash(crypto.Keccak256(code))
codeSize, err := tds.ReadAccountCodeSize(contract, codeHash)
assert.NoError(t, err, "you can receive the code size ")
assert.Equal(t, len(code), codeSize, "you can receive the code size")
if _, err = tds.ResolveStateTrie(false, false); err != nil {
assert.NoError(t, err)
}
assert.NoError(t, db.Delete(dbutils.CodeBucket, codeHash[:]))
codeSize2, err := tds.ReadAccountCodeSize(contract, codeHash)
assert.NoError(t, err, "you can still receive code size even with empty DB")
assert.Equal(t, len(code), codeSize2, "code size should be received even with empty DB")
}