mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-03 17:44:29 +00:00
adf52465e3
Useful for minimizing merge conflicts when rebasing new geth
1383 lines
36 KiB
Go
1383 lines
36 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty off
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package trie implements Merkle Patricia Tries.
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
|
|
"github.com/ledgerwatch/turbo-geth/common"
|
|
"github.com/ledgerwatch/turbo-geth/common/debug"
|
|
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
|
|
"github.com/ledgerwatch/turbo-geth/crypto"
|
|
"github.com/ledgerwatch/turbo-geth/ethdb"
|
|
"github.com/ledgerwatch/turbo-geth/log"
|
|
)
|
|
|
|
var (
|
|
// EmptyRoot is the known root hash of an empty trie.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#root
|
|
EmptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
|
|
|
|
// emptyState is the known hash of an empty state trie entry.
|
|
emptyState = crypto.Keccak256Hash(nil)
|
|
)
|
|
|
|
// Trie is a Merkle Patricia Trie.
|
|
// The zero value is an empty trie with no database.
|
|
// Use New to create a trie that sits on top of a database.
|
|
//
|
|
// Trie is not safe for concurrent use.
|
|
type Trie struct {
|
|
root node
|
|
|
|
newHasherFunc func() *hasher
|
|
|
|
Version uint8
|
|
|
|
binary bool
|
|
|
|
hashMap map[common.Hash]node
|
|
|
|
observers *ObserverMux
|
|
}
|
|
|
|
// New creates a trie with an existing root node from db.
|
|
//
|
|
// If root is the zero hash or the sha3 hash of an empty string, the
|
|
// trie is initially empty and does not require a database. Otherwise,
|
|
// New will panic if db is nil and returns a MissingNodeError if root does
|
|
// not exist in the database. Accessing the trie loads nodes from db on demand.
|
|
func New(root common.Hash) *Trie {
|
|
trie := &Trie{
|
|
newHasherFunc: func() *hasher { return newHasher( /*valueNodesRlpEncoded = */ false) },
|
|
hashMap: make(map[common.Hash]node),
|
|
observers: NewTrieObserverMux(),
|
|
}
|
|
if (root != common.Hash{}) && root != EmptyRoot {
|
|
trie.root = hashNode{hash: root[:]}
|
|
}
|
|
return trie
|
|
}
|
|
|
|
func NewBinary(root common.Hash) *Trie {
|
|
trie := New(root)
|
|
trie.binary = true
|
|
return trie
|
|
}
|
|
|
|
// NewTestRLPTrie treats all the data provided to `Update` function as rlp-encoded.
|
|
// it is usually used for testing purposes.
|
|
func NewTestRLPTrie(root common.Hash) *Trie {
|
|
trie := &Trie{
|
|
newHasherFunc: func() *hasher { return newHasher( /*valueNodesRlpEncoded = */ true) },
|
|
hashMap: make(map[common.Hash]node),
|
|
observers: NewTrieObserverMux(),
|
|
}
|
|
if (root != common.Hash{}) && root != EmptyRoot {
|
|
trie.root = hashNode{hash: root[:]}
|
|
}
|
|
return trie
|
|
}
|
|
|
|
func (t *Trie) AddObserver(observer Observer) {
|
|
t.observers.AddChild(observer)
|
|
}
|
|
|
|
// Get returns the value for key stored in the trie.
|
|
func (t *Trie) Get(key []byte) (value []byte, gotValue bool) {
|
|
if t.root == nil {
|
|
return nil, true
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
return t.get(t.root, hex, 0)
|
|
}
|
|
|
|
func (t *Trie) GetAccount(key []byte) (value *accounts.Account, gotValue bool) {
|
|
if t.root == nil {
|
|
return nil, true
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
accNode, gotValue := t.getAccount(t.root, hex, 0)
|
|
if accNode != nil {
|
|
var value accounts.Account
|
|
value.Copy(&accNode.Account)
|
|
return &value, gotValue
|
|
}
|
|
return nil, gotValue
|
|
}
|
|
|
|
func (t *Trie) GetAccountCode(key []byte) (value []byte, gotValue bool) {
|
|
if t.root == nil {
|
|
return nil, false
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
accNode, gotValue := t.getAccount(t.root, hex, 0)
|
|
if accNode != nil {
|
|
if bytes.Equal(accNode.Account.CodeHash[:], EmptyCodeHash[:]) {
|
|
return nil, gotValue
|
|
}
|
|
|
|
t.observers.CodeNodeTouched(hex)
|
|
|
|
if accNode.code == nil {
|
|
return nil, false
|
|
}
|
|
|
|
return accNode.code, gotValue
|
|
}
|
|
return nil, gotValue
|
|
}
|
|
|
|
func (t *Trie) GetAccountCodeSize(key []byte) (value int, gotValue bool) {
|
|
if t.root == nil {
|
|
return 0, false
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
accNode, gotValue := t.getAccount(t.root, hex, 0)
|
|
if accNode != nil {
|
|
if bytes.Equal(accNode.Account.CodeHash[:], EmptyCodeHash[:]) {
|
|
return 0, gotValue
|
|
}
|
|
|
|
if accNode.codeSize == codeSizeUncached {
|
|
return 0, false
|
|
}
|
|
|
|
return accNode.codeSize, gotValue
|
|
}
|
|
return 0, gotValue
|
|
}
|
|
|
|
func (t *Trie) getAccount(origNode node, key []byte, pos int) (value *accountNode, gotValue bool) {
|
|
switch n := (origNode).(type) {
|
|
case nil:
|
|
return nil, true
|
|
case *shortNode:
|
|
matchlen := prefixLen(key[pos:], n.Key)
|
|
if matchlen == len(n.Key) {
|
|
if v, ok := n.Val.(*accountNode); ok {
|
|
return v, true
|
|
} else {
|
|
return t.getAccount(n.Val, key, pos+matchlen)
|
|
}
|
|
} else {
|
|
return nil, true
|
|
}
|
|
case *duoNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
i1, i2 := n.childrenIdx()
|
|
switch key[pos] {
|
|
case i1:
|
|
return t.getAccount(n.child1, key, pos+1)
|
|
case i2:
|
|
return t.getAccount(n.child2, key, pos+1)
|
|
default:
|
|
return nil, true
|
|
}
|
|
case *fullNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
child := n.Children[key[pos]]
|
|
return t.getAccount(child, key, pos+1)
|
|
case hashNode:
|
|
return nil, false
|
|
|
|
case *accountNode:
|
|
return n, true
|
|
default:
|
|
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
|
|
}
|
|
}
|
|
|
|
func (t *Trie) get(origNode node, key []byte, pos int) (value []byte, gotValue bool) {
|
|
switch n := (origNode).(type) {
|
|
case nil:
|
|
return nil, true
|
|
case valueNode:
|
|
return n, true
|
|
case *accountNode:
|
|
return t.get(n.storage, key, pos)
|
|
case *shortNode:
|
|
matchlen := prefixLen(key[pos:], n.Key)
|
|
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
|
|
value, gotValue = t.get(n.Val, key, pos+matchlen)
|
|
} else {
|
|
value, gotValue = nil, true
|
|
}
|
|
return
|
|
case *duoNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
i1, i2 := n.childrenIdx()
|
|
switch key[pos] {
|
|
case i1:
|
|
value, gotValue = t.get(n.child1, key, pos+1)
|
|
case i2:
|
|
value, gotValue = t.get(n.child2, key, pos+1)
|
|
default:
|
|
value, gotValue = nil, true
|
|
}
|
|
return
|
|
case *fullNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
child := n.Children[key[pos]]
|
|
if child == nil {
|
|
return nil, true
|
|
}
|
|
return t.get(child, key, pos+1)
|
|
case hashNode:
|
|
return n.hash, false
|
|
|
|
default:
|
|
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
|
|
}
|
|
}
|
|
|
|
// Update associates key with value in the trie. Subsequent calls to
|
|
// Get will return value. If value has length zero, any existing value
|
|
// is deleted from the trie and calls to Get will return nil.
|
|
//
|
|
// The value bytes must not be modified by the caller while they are
|
|
// stored in the trie.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#root
|
|
func (t *Trie) Update(key, value []byte) {
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
newnode := valueNode(value)
|
|
|
|
if t.root == nil {
|
|
t.root = NewShortNode(hex, newnode)
|
|
} else {
|
|
_, t.root = t.insert(t.root, hex, valueNode(value))
|
|
}
|
|
}
|
|
|
|
func (t *Trie) UpdateAccount(key []byte, acc *accounts.Account) {
|
|
//make account copy. There are some pointer into big.Int
|
|
value := new(accounts.Account)
|
|
value.Copy(acc)
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
var newnode *accountNode
|
|
if value.Root == EmptyRoot || value.Root == (common.Hash{}) {
|
|
newnode = &accountNode{*value, nil, true, nil, codeSizeUncached}
|
|
} else {
|
|
newnode = &accountNode{*value, hashNode{hash: value.Root[:]}, true, nil, codeSizeUncached}
|
|
}
|
|
|
|
if t.root == nil {
|
|
t.root = NewShortNode(hex, newnode)
|
|
} else {
|
|
_, t.root = t.insert(t.root, hex, newnode)
|
|
}
|
|
}
|
|
|
|
// UpdateAccountCode attaches the code node to an account at specified key
|
|
func (t *Trie) UpdateAccountCode(key []byte, code codeNode) error {
|
|
if t.root == nil {
|
|
return nil
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
accNode, gotValue := t.getAccount(t.root, hex, 0)
|
|
if accNode == nil || !gotValue {
|
|
return fmt.Errorf("account not found with key: %x, %w", key, ethdb.ErrKeyNotFound)
|
|
}
|
|
|
|
actualCodeHash := crypto.Keccak256(code)
|
|
if !bytes.Equal(accNode.CodeHash[:], actualCodeHash) {
|
|
return fmt.Errorf("inserted code mismatch account hash (acc.CodeHash=%x codeHash=%x)", accNode.CodeHash[:], actualCodeHash)
|
|
}
|
|
|
|
accNode.code = code
|
|
accNode.codeSize = len(code)
|
|
|
|
// t.insert will call the observer methods itself
|
|
_, t.root = t.insert(t.root, hex, accNode)
|
|
return nil
|
|
}
|
|
|
|
// UpdateAccountCodeSize attaches the code size to the account
|
|
func (t *Trie) UpdateAccountCodeSize(key []byte, codeSize int) error {
|
|
if t.root == nil {
|
|
return nil
|
|
}
|
|
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
|
|
accNode, gotValue := t.getAccount(t.root, hex, 0)
|
|
if accNode == nil || !gotValue {
|
|
return fmt.Errorf("account not found with key: %x, %w", key, ethdb.ErrKeyNotFound)
|
|
}
|
|
|
|
accNode.codeSize = codeSize
|
|
|
|
// t.insert will call the observer methods itself
|
|
_, t.root = t.insert(t.root, hex, accNode)
|
|
return nil
|
|
}
|
|
|
|
// LoadRequestForCode Code expresses the need to fetch code from the DB (by its hash) and attach
|
|
// to a specific account leaf in the trie.
|
|
type LoadRequestForCode struct {
|
|
t *Trie
|
|
addrHash common.Hash // contract address hash
|
|
codeHash common.Hash
|
|
bytecode bool // include the bytecode too
|
|
}
|
|
|
|
func (lrc *LoadRequestForCode) String() string {
|
|
return fmt.Sprintf("rr_code{addrHash:%x,codeHash:%x,bytecode:%v}", lrc.addrHash, lrc.codeHash, lrc.bytecode)
|
|
}
|
|
|
|
func (t *Trie) NewLoadRequestForCode(addrHash common.Hash, codeHash common.Hash, bytecode bool) *LoadRequestForCode {
|
|
return &LoadRequestForCode{t, addrHash, codeHash, bytecode}
|
|
}
|
|
|
|
func (t *Trie) NeedLoadCode(addrHash common.Hash, codeHash common.Hash, bytecode bool) (bool, *LoadRequestForCode) {
|
|
if bytes.Equal(codeHash[:], EmptyCodeHash[:]) {
|
|
return false, nil
|
|
}
|
|
|
|
ok := false
|
|
if bytecode {
|
|
_, ok = t.GetAccountCode(addrHash[:])
|
|
} else {
|
|
_, ok = t.GetAccountCodeSize(addrHash[:])
|
|
}
|
|
if !ok {
|
|
return true, t.NewLoadRequestForCode(addrHash, codeHash, bytecode)
|
|
}
|
|
|
|
return false, nil
|
|
}
|
|
|
|
func min(a, b int) int {
|
|
if a < b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// FindSubTriesToLoad walks over the trie and creates the list of DB prefixes and
|
|
// corresponding list of valid bits in the prefix (for the cases when prefix contains an
|
|
// odd number of nibbles) that would allow loading the missing information from the database
|
|
// It also create list of `hooks`, the paths in the trie (in nibbles) where the loaded
|
|
// sub-tries need to be inserted.
|
|
func (t *Trie) FindSubTriesToLoad(rl RetainDecider) (prefixes [][]byte, fixedbits []int, hooks [][]byte) {
|
|
return findSubTriesToLoad(t.root, nil, nil, rl, nil, 0, nil, nil, nil)
|
|
}
|
|
|
|
var bytes8 [8]byte
|
|
var bytes16 [16]byte
|
|
|
|
func findSubTriesToLoad(nd node, nibblePath []byte, hook []byte, rl RetainDecider, dbPrefix []byte, bits int, prefixes [][]byte, fixedbits []int, hooks [][]byte) (newPrefixes [][]byte, newFixedBits []int, newHooks [][]byte) {
|
|
switch n := nd.(type) {
|
|
case *shortNode:
|
|
nKey := n.Key
|
|
if nKey[len(nKey)-1] == 16 {
|
|
nKey = nKey[:len(nKey)-1]
|
|
}
|
|
nibblePath = append(nibblePath, nKey...)
|
|
hook = append(hook, nKey...)
|
|
if !rl.Retain(nibblePath) {
|
|
return prefixes, fixedbits, hooks
|
|
}
|
|
for _, b := range nKey {
|
|
if bits%8 == 0 {
|
|
dbPrefix = append(dbPrefix, b<<4)
|
|
} else {
|
|
dbPrefix[len(dbPrefix)-1] &= 0xf0
|
|
dbPrefix[len(dbPrefix)-1] |= (b & 0xf)
|
|
}
|
|
bits += 4
|
|
}
|
|
return findSubTriesToLoad(n.Val, nibblePath, hook, rl, dbPrefix, bits, prefixes, fixedbits, hooks)
|
|
case *duoNode:
|
|
i1, i2 := n.childrenIdx()
|
|
newPrefixes = prefixes
|
|
newFixedBits = fixedbits
|
|
newHooks = hooks
|
|
newNibblePath := append(nibblePath, i1)
|
|
newHook := append(hook, i1)
|
|
if rl.Retain(newNibblePath) {
|
|
var newDbPrefix []byte
|
|
if bits%8 == 0 {
|
|
newDbPrefix = append(dbPrefix, i1<<4)
|
|
} else {
|
|
newDbPrefix = dbPrefix
|
|
newDbPrefix[len(newDbPrefix)-1] &= 0xf0
|
|
newDbPrefix[len(newDbPrefix)-1] |= (i1 & 0xf)
|
|
}
|
|
newPrefixes, newFixedBits, newHooks = findSubTriesToLoad(n.child1, newNibblePath, newHook, rl, newDbPrefix, bits+4, newPrefixes, newFixedBits, newHooks)
|
|
}
|
|
newNibblePath = append(nibblePath, i2)
|
|
newHook = append(hook, i2)
|
|
if rl.Retain(newNibblePath) {
|
|
var newDbPrefix []byte
|
|
if bits%8 == 0 {
|
|
newDbPrefix = append(dbPrefix, i2<<4)
|
|
} else {
|
|
newDbPrefix = dbPrefix
|
|
newDbPrefix[len(newDbPrefix)-1] &= 0xf0
|
|
newDbPrefix[len(newDbPrefix)-1] |= (i2 & 0xf)
|
|
}
|
|
newPrefixes, newFixedBits, newHooks = findSubTriesToLoad(n.child2, newNibblePath, newHook, rl, newDbPrefix, bits+4, newPrefixes, newFixedBits, newHooks)
|
|
}
|
|
return newPrefixes, newFixedBits, newHooks
|
|
case *fullNode:
|
|
newPrefixes = prefixes
|
|
newFixedBits = fixedbits
|
|
newHooks = hooks
|
|
var newNibblePath []byte
|
|
var newHook []byte
|
|
for i, child := range n.Children {
|
|
if child != nil {
|
|
newNibblePath = append(nibblePath, byte(i))
|
|
newHook = append(hook, byte(i))
|
|
if rl.Retain(newNibblePath) {
|
|
var newDbPrefix []byte
|
|
if bits%8 == 0 {
|
|
newDbPrefix = append(dbPrefix, byte(i)<<4)
|
|
} else {
|
|
newDbPrefix = dbPrefix
|
|
newDbPrefix[len(newDbPrefix)-1] &= 0xf0
|
|
newDbPrefix[len(newDbPrefix)-1] |= (byte(i) & 0xf)
|
|
}
|
|
newPrefixes, newFixedBits, newHooks = findSubTriesToLoad(child, newNibblePath, newHook, rl, newDbPrefix, bits+4, newPrefixes, newFixedBits, newHooks)
|
|
}
|
|
}
|
|
}
|
|
return newPrefixes, newFixedBits, newHooks
|
|
case *accountNode:
|
|
if n.storage == nil {
|
|
return prefixes, fixedbits, hooks
|
|
}
|
|
binary.BigEndian.PutUint64(bytes8[:], n.Incarnation)
|
|
dbPrefix = append(dbPrefix, bytes8[:]...)
|
|
// Add decompressed incarnation to the nibblePath
|
|
for i, b := range bytes8[:] {
|
|
bytes16[i*2] = b / 16
|
|
bytes16[i*2+1] = b % 16
|
|
}
|
|
nibblePath = append(nibblePath, bytes16[:]...)
|
|
newPrefixes = prefixes
|
|
newFixedBits = fixedbits
|
|
newHooks = hooks
|
|
if rl.Retain(nibblePath) {
|
|
newPrefixes, newFixedBits, newHooks = findSubTriesToLoad(n.storage, nibblePath, hook, rl, dbPrefix, bits+64, prefixes, fixedbits, hooks)
|
|
}
|
|
return newPrefixes, newFixedBits, newHooks
|
|
case hashNode:
|
|
newPrefixes = append(prefixes, common.CopyBytes(dbPrefix))
|
|
newFixedBits = append(fixedbits, bits)
|
|
newHooks = append(hooks, common.CopyBytes(hook))
|
|
return newPrefixes, newFixedBits, newHooks
|
|
}
|
|
return prefixes, fixedbits, hooks
|
|
}
|
|
|
|
// can pass incarnation=0 if start from root, method internally will
|
|
// put incarnation from accountNode when pass it by traverse
|
|
func (t *Trie) insert(origNode node, key []byte, value node) (updated bool, newNode node) {
|
|
return t.insertRecursive(origNode, key, 0, value)
|
|
}
|
|
|
|
func (t *Trie) insertRecursive(origNode node, key []byte, pos int, value node) (updated bool, newNode node) {
|
|
if len(key) == pos {
|
|
origN, origNok := origNode.(valueNode)
|
|
vn, vnok := value.(valueNode)
|
|
if origNok && vnok {
|
|
updated = !bytes.Equal(origN, vn)
|
|
if updated {
|
|
newNode = value
|
|
} else {
|
|
newNode = origN
|
|
}
|
|
return
|
|
}
|
|
origAccN, origNok := origNode.(*accountNode)
|
|
vAccN, vnok := value.(*accountNode)
|
|
if origNok && vnok {
|
|
updated = !origAccN.Equals(&vAccN.Account)
|
|
if updated {
|
|
if !bytes.Equal(origAccN.CodeHash[:], vAccN.CodeHash[:]) {
|
|
origAccN.code = nil
|
|
} else if vAccN.code != nil {
|
|
origAccN.code = vAccN.code
|
|
}
|
|
origAccN.Account.Copy(&vAccN.Account)
|
|
origAccN.codeSize = vAccN.codeSize
|
|
origAccN.rootCorrect = false
|
|
}
|
|
newNode = origAccN
|
|
|
|
if len(origAccN.code) > 0 {
|
|
t.observers.CodeNodeSizeChanged(key[:pos-1], uint(len(origAccN.code)))
|
|
} else {
|
|
t.observers.CodeNodeDeleted(key[:pos-1])
|
|
}
|
|
return
|
|
}
|
|
|
|
// replacing nodes except accounts
|
|
if !origNok {
|
|
t.evictSubtreeFromHashMap(origNode)
|
|
return true, value
|
|
}
|
|
}
|
|
|
|
var nn node
|
|
switch n := origNode.(type) {
|
|
case nil:
|
|
return true, NewShortNode(common.CopyBytes(key[pos:]), value)
|
|
case *accountNode:
|
|
updated, nn = t.insertRecursive(n.storage, key, pos, value)
|
|
if updated {
|
|
n.storage = nn
|
|
n.rootCorrect = false
|
|
}
|
|
return updated, n
|
|
case *shortNode:
|
|
matchlen := prefixLen(key[pos:], n.Key)
|
|
// If the whole key matches, keep this short node as is
|
|
// and only update the value.
|
|
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
|
|
updated, nn = t.insertRecursive(n.Val, key, pos+matchlen, value)
|
|
if updated {
|
|
t.evictNodeFromHashMap(n)
|
|
n.Val = nn
|
|
n.ref.len = 0
|
|
}
|
|
newNode = n
|
|
} else {
|
|
// Otherwise branch out at the index where they differ.
|
|
t.evictNodeFromHashMap(n)
|
|
var c1 node
|
|
if len(n.Key) == matchlen+1 {
|
|
c1 = n.Val
|
|
} else {
|
|
c1 = NewShortNode(common.CopyBytes(n.Key[matchlen+1:]), n.Val)
|
|
}
|
|
var c2 node
|
|
if len(key) == pos+matchlen+1 {
|
|
c2 = value
|
|
} else {
|
|
c2 = NewShortNode(common.CopyBytes(key[pos+matchlen+1:]), value)
|
|
}
|
|
branch := &duoNode{}
|
|
if n.Key[matchlen] < key[pos+matchlen] {
|
|
branch.child1 = c1
|
|
branch.child2 = c2
|
|
} else {
|
|
branch.child1 = c2
|
|
branch.child2 = c1
|
|
}
|
|
branch.mask = (1 << (n.Key[matchlen])) | (1 << (key[pos+matchlen]))
|
|
|
|
// Replace this shortNode with the branch if it occurs at index 0.
|
|
if matchlen == 0 {
|
|
newNode = branch // current node leaves the generation, but new node branch joins it
|
|
} else {
|
|
// Otherwise, replace it with a short node leading up to the branch.
|
|
n.Key = common.CopyBytes(key[pos : pos+matchlen])
|
|
n.Val = branch
|
|
n.ref.len = 0
|
|
newNode = n
|
|
}
|
|
t.observers.BranchNodeCreated(key[:pos+matchlen])
|
|
updated = true
|
|
}
|
|
return
|
|
|
|
case *duoNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
i1, i2 := n.childrenIdx()
|
|
switch key[pos] {
|
|
case i1:
|
|
updated, nn = t.insertRecursive(n.child1, key, pos+1, value)
|
|
if updated {
|
|
t.evictNodeFromHashMap(n)
|
|
n.child1 = nn
|
|
n.ref.len = 0
|
|
}
|
|
newNode = n
|
|
case i2:
|
|
updated, nn = t.insertRecursive(n.child2, key, pos+1, value)
|
|
if updated {
|
|
t.evictNodeFromHashMap(n)
|
|
n.child2 = nn
|
|
n.ref.len = 0
|
|
}
|
|
newNode = n
|
|
default:
|
|
t.evictNodeFromHashMap(n)
|
|
var child node
|
|
if len(key) == pos+1 {
|
|
child = value
|
|
} else {
|
|
child = NewShortNode(common.CopyBytes(key[pos+1:]), value)
|
|
}
|
|
newnode := &fullNode{}
|
|
newnode.Children[i1] = n.child1
|
|
newnode.Children[i2] = n.child2
|
|
newnode.Children[key[pos]] = child
|
|
updated = true
|
|
// current node leaves the generation but newnode joins it
|
|
newNode = newnode
|
|
}
|
|
return
|
|
|
|
case *fullNode:
|
|
t.observers.BranchNodeTouched(key[:pos])
|
|
child := n.Children[key[pos]]
|
|
if child == nil {
|
|
t.evictNodeFromHashMap(n)
|
|
if len(key) == pos+1 {
|
|
n.Children[key[pos]] = value
|
|
} else {
|
|
n.Children[key[pos]] = NewShortNode(common.CopyBytes(key[pos+1:]), value)
|
|
}
|
|
updated = true
|
|
n.ref.len = 0
|
|
} else {
|
|
updated, nn = t.insertRecursive(child, key, pos+1, value)
|
|
if updated {
|
|
t.evictNodeFromHashMap(n)
|
|
n.Children[key[pos]] = nn
|
|
n.ref.len = 0
|
|
}
|
|
}
|
|
newNode = n
|
|
return
|
|
default:
|
|
panic(fmt.Sprintf("%T: invalid node: %v. Searched by: key=%x, pos=%d", n, n, key, pos))
|
|
}
|
|
}
|
|
|
|
// non-recursive version of get and returns: node and parent node
|
|
func (t *Trie) getNode(hex []byte, doTouch bool) (node, node, bool, uint64) {
|
|
var nd = t.root
|
|
var parent node
|
|
pos := 0
|
|
var account bool
|
|
var incarnation uint64
|
|
for pos < len(hex) || account {
|
|
switch n := nd.(type) {
|
|
case nil:
|
|
return nil, nil, false, incarnation
|
|
case *shortNode:
|
|
matchlen := prefixLen(hex[pos:], n.Key)
|
|
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
|
|
parent = n
|
|
nd = n.Val
|
|
pos += matchlen
|
|
if _, ok := nd.(*accountNode); ok {
|
|
account = true
|
|
}
|
|
} else {
|
|
return nil, nil, false, incarnation
|
|
}
|
|
case *duoNode:
|
|
if doTouch {
|
|
t.observers.BranchNodeTouched(hex[:pos])
|
|
}
|
|
i1, i2 := n.childrenIdx()
|
|
switch hex[pos] {
|
|
case i1:
|
|
parent = n
|
|
nd = n.child1
|
|
pos++
|
|
case i2:
|
|
parent = n
|
|
nd = n.child2
|
|
pos++
|
|
default:
|
|
return nil, nil, false, incarnation
|
|
}
|
|
case *fullNode:
|
|
if doTouch {
|
|
t.observers.BranchNodeTouched(hex[:pos])
|
|
}
|
|
child := n.Children[hex[pos]]
|
|
if child == nil {
|
|
return nil, nil, false, incarnation
|
|
}
|
|
parent = n
|
|
nd = child
|
|
pos++
|
|
case *accountNode:
|
|
parent = n
|
|
nd = n.storage
|
|
incarnation = n.Incarnation
|
|
account = false
|
|
case valueNode:
|
|
return nd, parent, true, incarnation
|
|
case hashNode:
|
|
return nd, parent, true, incarnation
|
|
default:
|
|
panic(fmt.Sprintf("Unknown node: %T", n))
|
|
}
|
|
}
|
|
return nd, parent, true, incarnation
|
|
}
|
|
|
|
func (t *Trie) HookSubTries(subTries SubTries, hooks [][]byte) error {
|
|
for i, hookNibbles := range hooks {
|
|
root := subTries.roots[i]
|
|
hash := subTries.Hashes[i]
|
|
if root == nil {
|
|
return fmt.Errorf("root==nil for hook %x", hookNibbles)
|
|
}
|
|
if err := t.hook(hookNibbles, root, hash[:]); err != nil {
|
|
return fmt.Errorf("hook %x: %v", hookNibbles, err)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (t *Trie) hook(hex []byte, n node, hash []byte) error {
|
|
nd, parent, ok, incarnation := t.getNode(hex, true)
|
|
if !ok {
|
|
return nil
|
|
}
|
|
if _, ok := nd.(valueNode); ok {
|
|
return nil
|
|
}
|
|
if hn, ok := nd.(hashNode); ok {
|
|
if !bytes.Equal(hn.hash, hash) {
|
|
return fmt.Errorf("wrong hash when hooking, expected %s, sub-tree hash %x", hn, hash)
|
|
}
|
|
} else if nd != nil {
|
|
return fmt.Errorf("expected hash node at %x, got %T", hex, nd)
|
|
}
|
|
|
|
t.touchAll(n, hex, false, incarnation)
|
|
switch p := parent.(type) {
|
|
case nil:
|
|
t.root = n
|
|
case *shortNode:
|
|
p.Val = n
|
|
case *duoNode:
|
|
i1, i2 := p.childrenIdx()
|
|
switch hex[len(hex)-1] {
|
|
case i1:
|
|
p.child1 = n
|
|
case i2:
|
|
p.child2 = n
|
|
}
|
|
case *fullNode:
|
|
idx := hex[len(hex)-1]
|
|
p.Children[idx] = n
|
|
case *accountNode:
|
|
p.storage = n
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (t *Trie) touchAll(n node, hex []byte, del bool, incarnation uint64) {
|
|
if del {
|
|
t.evictNodeFromHashMap(n)
|
|
} else if len(n.reference()) == common.HashLength && debug.IsGetNodeData() {
|
|
var key common.Hash
|
|
copy(key[:], n.reference())
|
|
t.hashMap[key] = n
|
|
}
|
|
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
if _, ok := n.Val.(valueNode); !ok {
|
|
// Don't need to compute prefix for a leaf
|
|
h := n.Key
|
|
// Remove terminator
|
|
if h[len(h)-1] == 16 {
|
|
h = h[:len(h)-1]
|
|
}
|
|
hexVal := concat(hex, h...)
|
|
t.touchAll(n.Val, hexVal, del, incarnation)
|
|
}
|
|
case *duoNode:
|
|
if del {
|
|
t.observers.BranchNodeDeleted(hex)
|
|
} else {
|
|
t.observers.BranchNodeCreated(hex)
|
|
t.observers.BranchNodeLoaded(hex, incarnation)
|
|
}
|
|
i1, i2 := n.childrenIdx()
|
|
hex1 := make([]byte, len(hex)+1)
|
|
copy(hex1, hex)
|
|
hex1[len(hex)] = i1
|
|
hex2 := make([]byte, len(hex)+1)
|
|
copy(hex2, hex)
|
|
hex2[len(hex)] = i2
|
|
t.touchAll(n.child1, hex1, del, incarnation)
|
|
t.touchAll(n.child2, hex2, del, incarnation)
|
|
case *fullNode:
|
|
if del {
|
|
t.observers.BranchNodeDeleted(hex)
|
|
} else {
|
|
t.observers.BranchNodeCreated(hex)
|
|
t.observers.BranchNodeLoaded(hex, incarnation)
|
|
}
|
|
for i, child := range n.Children {
|
|
if child != nil {
|
|
t.touchAll(child, concat(hex, byte(i)), del, incarnation)
|
|
}
|
|
}
|
|
case *accountNode:
|
|
if del {
|
|
t.observers.CodeNodeDeleted(hex)
|
|
} else {
|
|
t.observers.CodeNodeTouched(hex)
|
|
}
|
|
if n.storage != nil {
|
|
t.touchAll(n.storage, hex, del, n.Incarnation)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Delete removes any existing value for key from the trie.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#root
|
|
func (t *Trie) Delete(key []byte) {
|
|
hex := keybytesToHex(key)
|
|
if t.binary {
|
|
hex = keyHexToBin(hex)
|
|
}
|
|
_, t.root = t.delete(t.root, hex, false)
|
|
}
|
|
|
|
func (t *Trie) convertToShortNode(child node, pos uint) node {
|
|
if pos != 16 {
|
|
// If the remaining entry is a short node, it replaces
|
|
// n and its key gets the missing nibble tacked to the
|
|
// front. This avoids creating an invalid
|
|
// shortNode{..., shortNode{...}}. Since the entry
|
|
// might not be loaded yet, resolve it just for this
|
|
// check.
|
|
if short, ok := child.(*shortNode); ok {
|
|
t.evictNodeFromHashMap(child)
|
|
k := make([]byte, len(short.Key)+1)
|
|
k[0] = byte(pos)
|
|
copy(k[1:], short.Key)
|
|
return NewShortNode(k, short.Val)
|
|
}
|
|
}
|
|
// Otherwise, n is replaced by a one-nibble short node
|
|
// containing the child.
|
|
return NewShortNode([]byte{byte(pos)}, child)
|
|
}
|
|
|
|
func (t *Trie) delete(origNode node, key []byte, preserveAccountNode bool) (updated bool, newNode node) {
|
|
return t.deleteRecursive(origNode, key, 0, preserveAccountNode, 0)
|
|
}
|
|
|
|
// delete returns the new root of the trie with key deleted.
|
|
// It reduces the trie to minimal form by simplifying
|
|
// nodes on the way up after deleting recursively.
|
|
//
|
|
// can pass incarnation=0 if start from root, method internally will
|
|
// put incarnation from accountNode when pass it by traverse
|
|
func (t *Trie) deleteRecursive(origNode node, key []byte, keyStart int, preserveAccountNode bool, incarnation uint64) (updated bool, newNode node) {
|
|
var nn node
|
|
switch n := origNode.(type) {
|
|
case *shortNode:
|
|
matchlen := prefixLen(key[keyStart:], n.Key)
|
|
if matchlen == min(len(n.Key), len(key[keyStart:])) || n.Key[matchlen] == 16 || key[keyStart+matchlen] == 16 {
|
|
fullMatch := matchlen == len(key)-keyStart
|
|
removeNodeEntirely := fullMatch
|
|
if preserveAccountNode {
|
|
removeNodeEntirely = len(key) == keyStart || matchlen == len(key[keyStart:])-1
|
|
}
|
|
|
|
if removeNodeEntirely {
|
|
t.evictNodeFromHashMap(n)
|
|
updated = true
|
|
touchKey := key[:keyStart+matchlen]
|
|
if touchKey[len(touchKey)-1] == 16 {
|
|
touchKey = touchKey[:len(touchKey)-1]
|
|
}
|
|
t.touchAll(n.Val, touchKey, true, incarnation)
|
|
newNode = nil
|
|
} else {
|
|
// The key is longer than n.Key. Remove the remaining suffix
|
|
// from the subtrie. Child can never be nil here since the
|
|
// subtrie must contain at least two other values with keys
|
|
// longer than n.Key.
|
|
updated, nn = t.deleteRecursive(n.Val, key, keyStart+matchlen, preserveAccountNode, incarnation)
|
|
if !updated {
|
|
newNode = n
|
|
} else {
|
|
t.evictNodeFromHashMap(n)
|
|
if nn == nil {
|
|
newNode = nil
|
|
} else {
|
|
if shortChild, ok := nn.(*shortNode); ok {
|
|
// Deleting from the subtrie reduced it to another
|
|
// short node. Merge the nodes to avoid creating a
|
|
// shortNode{..., shortNode{...}}. Use concat (which
|
|
// always creates a new slice) instead of append to
|
|
// avoid modifying n.Key since it might be shared with
|
|
// other nodes.
|
|
newNode = NewShortNode(concat(n.Key, shortChild.Key...), shortChild.Val)
|
|
} else {
|
|
n.Val = nn
|
|
newNode = n
|
|
n.ref.len = 0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
updated = false
|
|
newNode = n // don't replace n on mismatch
|
|
}
|
|
return
|
|
|
|
case *duoNode:
|
|
i1, i2 := n.childrenIdx()
|
|
switch key[keyStart] {
|
|
case i1:
|
|
updated, nn = t.deleteRecursive(n.child1, key, keyStart+1, preserveAccountNode, incarnation)
|
|
if !updated {
|
|
newNode = n
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
} else {
|
|
t.evictNodeFromHashMap(n)
|
|
if nn == nil {
|
|
newNode = t.convertToShortNode(n.child2, uint(i2))
|
|
t.observers.BranchNodeDeleted(key[:keyStart])
|
|
} else {
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
n.child1 = nn
|
|
n.ref.len = 0
|
|
newNode = n
|
|
}
|
|
}
|
|
case i2:
|
|
updated, nn = t.deleteRecursive(n.child2, key, keyStart+1, preserveAccountNode, incarnation)
|
|
if !updated {
|
|
newNode = n
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
} else {
|
|
t.evictNodeFromHashMap(n)
|
|
if nn == nil {
|
|
newNode = t.convertToShortNode(n.child1, uint(i1))
|
|
t.observers.BranchNodeDeleted(key[:keyStart])
|
|
} else {
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
n.child2 = nn
|
|
n.ref.len = 0
|
|
newNode = n
|
|
}
|
|
}
|
|
default:
|
|
updated = false
|
|
newNode = n
|
|
}
|
|
return
|
|
|
|
case *fullNode:
|
|
child := n.Children[key[keyStart]]
|
|
updated, nn = t.deleteRecursive(child, key, keyStart+1, preserveAccountNode, incarnation)
|
|
if !updated {
|
|
newNode = n
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
} else {
|
|
t.evictNodeFromHashMap(n)
|
|
n.Children[key[keyStart]] = nn
|
|
// Check how many non-nil entries are left after deleting and
|
|
// reduce the full node to a short node if only one entry is
|
|
// left. Since n must've contained at least two children
|
|
// before deletion (otherwise it would not be a full node) n
|
|
// can never be reduced to nil.
|
|
//
|
|
// When the loop is done, pos contains the index of the single
|
|
// value that is left in n or -2 if n contains at least two
|
|
// values.
|
|
var pos1, pos2 int
|
|
count := 0
|
|
for i, cld := range n.Children {
|
|
if cld != nil {
|
|
if count == 0 {
|
|
pos1 = i
|
|
}
|
|
if count == 1 {
|
|
pos2 = i
|
|
}
|
|
count++
|
|
if count > 2 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if count == 1 {
|
|
newNode = t.convertToShortNode(n.Children[pos1], uint(pos1))
|
|
t.observers.BranchNodeDeleted(key[:keyStart])
|
|
} else if count == 2 {
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
duo := &duoNode{}
|
|
if pos1 == int(key[keyStart]) {
|
|
duo.child1 = nn
|
|
} else {
|
|
duo.child1 = n.Children[pos1]
|
|
}
|
|
if pos2 == int(key[keyStart]) {
|
|
duo.child2 = nn
|
|
} else {
|
|
duo.child2 = n.Children[pos2]
|
|
}
|
|
duo.mask = (1 << uint(pos1)) | (uint32(1) << uint(pos2))
|
|
newNode = duo
|
|
} else if count > 2 {
|
|
t.observers.BranchNodeTouched(key[:keyStart])
|
|
// n still contains at least three values and cannot be reduced.
|
|
n.ref.len = 0
|
|
newNode = n
|
|
}
|
|
}
|
|
return
|
|
|
|
case valueNode:
|
|
updated = true
|
|
newNode = nil
|
|
return
|
|
|
|
case *accountNode:
|
|
if keyStart >= len(key) || key[keyStart] == 16 {
|
|
// Key terminates here
|
|
h := key[:keyStart]
|
|
if h[len(h)-1] == 16 {
|
|
h = h[:len(h)-1]
|
|
}
|
|
if n.storage != nil {
|
|
// Mark all the storage nodes as deleted
|
|
t.touchAll(n.storage, h, true, n.Incarnation)
|
|
}
|
|
if preserveAccountNode {
|
|
n.storage = nil
|
|
n.code = nil
|
|
n.Root = EmptyRoot
|
|
n.rootCorrect = true
|
|
t.observers.CodeNodeDeleted(h)
|
|
return true, n
|
|
}
|
|
|
|
return true, nil
|
|
}
|
|
updated, nn = t.deleteRecursive(n.storage, key, keyStart, preserveAccountNode, n.Incarnation)
|
|
if updated {
|
|
n.storage = nn
|
|
n.rootCorrect = false
|
|
}
|
|
newNode = n
|
|
return
|
|
|
|
case nil:
|
|
updated = false
|
|
newNode = nil
|
|
return
|
|
|
|
default:
|
|
panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key[:keyStart]))
|
|
}
|
|
}
|
|
|
|
// DeleteSubtree removes any existing value for key from the trie.
|
|
// The only difference between Delete and DeleteSubtree is that Delete would delete accountNode too,
|
|
// wherewas DeleteSubtree will keep the accountNode, but will make the storage sub-trie empty
|
|
func (t *Trie) DeleteSubtree(keyPrefix []byte) {
|
|
hexPrefix := keybytesToHex(keyPrefix)
|
|
if t.binary {
|
|
hexPrefix = keyHexToBin(hexPrefix)
|
|
}
|
|
|
|
_, t.root = t.delete(t.root, hexPrefix, true)
|
|
|
|
}
|
|
|
|
func concat(s1 []byte, s2 ...byte) []byte {
|
|
r := make([]byte, len(s1)+len(s2))
|
|
copy(r, s1)
|
|
copy(r[len(s1):], s2)
|
|
return r
|
|
}
|
|
|
|
// Root returns the root hash of the trie.
|
|
// Deprecated: use Hash instead.
|
|
func (t *Trie) Root() []byte { return t.Hash().Bytes() }
|
|
|
|
// Hash returns the root hash of the trie. It does not write to the
|
|
// database and can be used even if the trie doesn't have one.
|
|
// DESCRIBED: docs/programmers_guide/guide.md#root
|
|
func (t *Trie) Hash() common.Hash {
|
|
if t == nil || t.root == nil {
|
|
return EmptyRoot
|
|
}
|
|
|
|
h := t.getHasher()
|
|
defer returnHasherToPool(h)
|
|
|
|
var result common.Hash
|
|
_, _ = h.hash(t.root, true, result[:])
|
|
|
|
return result
|
|
}
|
|
|
|
func (t *Trie) Reset() {
|
|
resetRefs(t.root)
|
|
}
|
|
|
|
func (t *Trie) getHasher() *hasher {
|
|
h := t.newHasherFunc()
|
|
if debug.IsGetNodeData() {
|
|
h.callback = func(key common.Hash, nd node) {
|
|
t.hashMap[key] = nd
|
|
}
|
|
}
|
|
return h
|
|
}
|
|
|
|
// DeepHash returns internal hash of a node reachable by the specified key prefix.
|
|
// Note that if the prefix points into the middle of a key for a leaf node or of an extention
|
|
// node, it will return the hash of a modified leaf node or extension node, where the
|
|
// key prefix is removed from the key.
|
|
// First returned value is `true` if the node with the specified prefix is found.
|
|
func (t *Trie) DeepHash(keyPrefix []byte) (bool, common.Hash) {
|
|
hexPrefix := keybytesToHex(keyPrefix)
|
|
if t.binary {
|
|
hexPrefix = keyHexToBin(hexPrefix)
|
|
}
|
|
accNode, gotValue := t.getAccount(t.root, hexPrefix, 0)
|
|
if !gotValue {
|
|
return false, common.Hash{}
|
|
}
|
|
if accNode.rootCorrect {
|
|
return true, accNode.Root
|
|
}
|
|
if accNode.storage == nil {
|
|
accNode.Root = EmptyRoot
|
|
accNode.rootCorrect = true
|
|
} else {
|
|
h := t.getHasher()
|
|
defer returnHasherToPool(h)
|
|
h.hash(accNode.storage, true, accNode.Root[:])
|
|
}
|
|
return true, accNode.Root
|
|
}
|
|
|
|
func (t *Trie) EvictNode(hex []byte) {
|
|
isCode := IsPointingToCode(hex)
|
|
if isCode {
|
|
hex = AddrHashFromCodeKey(hex)
|
|
}
|
|
|
|
nd, parent, ok, incarnation := t.getNode(hex, false)
|
|
if !ok {
|
|
return
|
|
}
|
|
if accNode, ok := parent.(*accountNode); isCode && ok {
|
|
// add special treatment to code nodes
|
|
accNode.code = nil
|
|
return
|
|
}
|
|
|
|
switch nd.(type) {
|
|
case valueNode, hashNode:
|
|
return
|
|
default:
|
|
// can work with other nodes type
|
|
}
|
|
|
|
t.evictSubtreeFromHashMap(nd)
|
|
|
|
var hn common.Hash
|
|
if nd == nil {
|
|
fmt.Printf("nd == nil, hex %x, parent node: %T\n", hex, parent)
|
|
return
|
|
}
|
|
copy(hn[:], nd.reference())
|
|
hnode := hashNode{hash: hn[:]}
|
|
t.observers.WillUnloadNode(hex, hn)
|
|
|
|
t.notifyUnloadRecursive(hex, incarnation, nd)
|
|
|
|
switch p := parent.(type) {
|
|
case nil:
|
|
t.root = hnode
|
|
case *shortNode:
|
|
p.Val = hnode
|
|
case *duoNode:
|
|
i1, i2 := p.childrenIdx()
|
|
switch hex[len(hex)-1] {
|
|
case i1:
|
|
p.child1 = hnode
|
|
case i2:
|
|
p.child2 = hnode
|
|
}
|
|
case *fullNode:
|
|
idx := hex[len(hex)-1]
|
|
p.Children[idx] = hnode
|
|
case *accountNode:
|
|
p.storage = hnode
|
|
}
|
|
}
|
|
|
|
func (t *Trie) notifyUnloadRecursive(hex []byte, incarnation uint64, nd node) {
|
|
switch n := nd.(type) {
|
|
case *shortNode:
|
|
hex = append(hex, n.Key...)
|
|
if hex[len(hex)-1] == 16 {
|
|
hex = hex[:len(hex)-1]
|
|
}
|
|
t.notifyUnloadRecursive(hex, incarnation, n.Val)
|
|
case *accountNode:
|
|
if n.storage == nil {
|
|
return
|
|
}
|
|
if _, ok := n.storage.(hashNode); ok {
|
|
return
|
|
}
|
|
t.notifyUnloadRecursive(hex, n.Incarnation, n.storage)
|
|
case *fullNode:
|
|
t.observers.WillUnloadBranchNode(hex, common.BytesToHash(n.reference()), incarnation)
|
|
for i := range n.Children {
|
|
if n.Children[i] == nil {
|
|
continue
|
|
}
|
|
if _, ok := n.Children[i].(hashNode); ok {
|
|
continue
|
|
}
|
|
t.notifyUnloadRecursive(append(hex, uint8(i)), incarnation, n.Children[i])
|
|
}
|
|
case *duoNode:
|
|
t.observers.WillUnloadBranchNode(hex, common.BytesToHash(n.reference()), incarnation)
|
|
i1, i2 := n.childrenIdx()
|
|
if n.child1 != nil {
|
|
t.notifyUnloadRecursive(append(hex, i1), incarnation, n.child1)
|
|
}
|
|
if n.child2 != nil {
|
|
t.notifyUnloadRecursive(append(hex, i2), incarnation, n.child2)
|
|
}
|
|
default:
|
|
// nothing to do
|
|
}
|
|
}
|
|
|
|
func (t *Trie) TrieSize() int {
|
|
return calcSubtreeSize(t.root)
|
|
}
|
|
|
|
func (t *Trie) NumberOfAccounts() int {
|
|
return calcSubtreeNodes(t.root)
|
|
}
|
|
|
|
// GetNodeByHash gets node's RLP by hash.
|
|
func (t *Trie) GetNodeByHash(hash common.Hash) []byte {
|
|
nd := t.hashMap[hash]
|
|
if nd == nil {
|
|
return nil
|
|
}
|
|
|
|
h := t.getHasher()
|
|
defer returnHasherToPool(h)
|
|
|
|
rlp, err := h.hashChildren(nd, 0)
|
|
if err != nil {
|
|
log.Warn("GetNodeByHash error while producing node RLP", "err", err)
|
|
return nil
|
|
}
|
|
|
|
return common.CopyBytes(rlp)
|
|
}
|
|
|
|
func (t *Trie) evictNodeFromHashMap(nd node) {
|
|
if !debug.IsGetNodeData() || nd == nil {
|
|
return
|
|
}
|
|
if len(nd.reference()) == common.HashLength {
|
|
var key common.Hash
|
|
copy(key[:], nd.reference())
|
|
delete(t.hashMap, key)
|
|
}
|
|
}
|
|
|
|
func (t *Trie) evictSubtreeFromHashMap(n node) {
|
|
if !debug.IsGetNodeData() {
|
|
return
|
|
}
|
|
t.evictNodeFromHashMap(n)
|
|
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
if _, ok := n.Val.(valueNode); !ok {
|
|
t.evictSubtreeFromHashMap(n.Val)
|
|
}
|
|
case *duoNode:
|
|
t.evictSubtreeFromHashMap(n.child1)
|
|
t.evictSubtreeFromHashMap(n.child2)
|
|
case *fullNode:
|
|
for _, child := range n.Children {
|
|
if child != nil {
|
|
t.evictSubtreeFromHashMap(child)
|
|
}
|
|
}
|
|
case *accountNode:
|
|
if n.storage != nil {
|
|
t.evictSubtreeFromHashMap(n.storage)
|
|
}
|
|
}
|
|
}
|
|
|
|
// HashMapSize returns the number of entries in trie's hash map.
|
|
func (t *Trie) HashMapSize() int {
|
|
return len(t.hashMap)
|
|
}
|