erigon-pulse/turbo/trie/trie_test.go
Igor Mandrigin adf52465e3
move ./trie to ./turbo/trie (#1114)
Useful for minimizing merge conflicts when rebasing new geth
2020-09-14 11:33:39 +01:00

893 lines
27 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"encoding/binary"
"fmt"
"io/ioutil"
"math/big"
"math/rand"
"os"
"reflect"
"testing"
"testing/quick"
"github.com/davecgh/go-spew/spew"
"github.com/stretchr/testify/assert"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/debug"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/ethdb"
"github.com/ledgerwatch/turbo-geth/rlp"
)
func init() {
spew.Config.Indent = " "
spew.Config.DisableMethods = false
}
// Used for testing
func newEmpty() *Trie {
trie := New(common.Hash{})
return trie
}
func TestEmptyTrie(t *testing.T) {
var trie Trie
res := trie.Hash()
exp := EmptyRoot
if res != common.Hash(exp) {
t.Errorf("expected %x got %x", exp, res)
}
}
func TestNull(t *testing.T) {
var trie Trie
key := make([]byte, 32)
value := []byte("test")
trie.Update(key, value)
v, _ := trie.Get(key)
if !bytes.Equal(v, value) {
t.Fatal("wrong value")
}
}
func TestInsert(t *testing.T) {
t.Skip("we don't support different key length")
trie := newEmpty()
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
fmt.Printf("\n\n%s\n\n", trie.root.fstring(""))
exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3")
root := trie.Hash()
if root != exp {
t.Errorf("case 1: exp %x got %x", exp, root)
}
trie = newEmpty()
updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab")
root = trie.Hash()
if root != exp {
t.Errorf("case 2: exp %x got %x", exp, root)
}
}
func TestGet(t *testing.T) {
t.Skip("different length of key is not supported")
trie := newEmpty()
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
for i := 0; i < 2; i++ {
res := getString(trie, "dog")
if !bytes.Equal(res, []byte("puppy")) {
t.Errorf("expected puppy got %x", res)
}
unknown := getString(trie, "unknown")
if unknown != nil {
t.Errorf("expected nil got %x", unknown)
}
if i == 1 {
return
}
}
}
func TestDelete(t *testing.T) {
t.Skip("should be restored. skipped for turbo-geth")
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
if val.v != "" {
updateString(trie, val.k, val.v)
} else {
deleteString(trie, val.k)
}
}
hash := trie.Hash()
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestEmptyValues(t *testing.T) {
t.Skip("should be restored. skipped for turbo-geth")
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
updateString(trie, val.k, val.v)
}
hash := trie.Hash()
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestReplication(t *testing.T) {
t.Skip("should be restored. skipped for turbo-geth")
trie := newEmpty()
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"dog", "puppy"},
{"somethingveryoddindeedthis is", "myothernodedata"},
}
for _, val := range vals {
updateString(trie, val.k, val.v)
}
exp := trie.Hash()
// create a new trie on top of the database and check that lookups work.
trie2 := New(exp)
for _, kv := range vals {
if string(getString(trie2, kv.k)) != kv.v {
t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v)
}
}
hash := trie2.Hash()
if hash != exp {
t.Errorf("root failure. expected %x got %x", exp, hash)
}
// perform some insertions on the new trie.
vals2 := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
// {"shaman", "horse"},
// {"doge", "coin"},
// {"ether", ""},
// {"dog", "puppy"},
// {"somethingveryoddindeedthis is", "myothernodedata"},
// {"shaman", ""},
}
for _, val := range vals2 {
updateString(trie2, val.k, val.v)
}
if hash := trie2.Hash(); hash != exp {
t.Errorf("root failure. expected %x got %x", exp, hash)
}
}
func TestLargeValue(t *testing.T) {
trie := newEmpty()
trie.Update([]byte("key1"), []byte{99, 99, 99, 99})
trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32))
trie.Hash()
}
type countingDB struct {
ethdb.Database
gets map[string]int
}
func (db *countingDB) Get(bucket string, key []byte) ([]byte, error) {
db.gets[string(key)]++
return db.Database.Get(bucket, key)
}
// TestRandomCases tests som cases that were found via random fuzzing
func TestRandomCases(t *testing.T) {
var rt []randTestStep = []randTestStep{
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2
{op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9
{op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12
{op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14
{op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19
// FIXME: fix these testcases for turbo-geth
//{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20
//{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21
//{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23
//{op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24
//{op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25
}
runRandTest(rt)
}
// randTest performs random trie operations.
// Instances of this test are created by Generate.
type randTest []randTestStep
type randTestStep struct {
op int
key []byte // for opUpdate, opDelete, opGet
value []byte // for opUpdate
err error // for debugging
}
const (
opUpdate = iota
opDelete
opGet
opCommit
opHash
opReset
opItercheckhash
opCheckCacheInvariant
opMax // boundary value, not an actual op
)
func (randTest) Generate(r *rand.Rand, size int) reflect.Value {
var allKeys [][]byte
genKey := func() []byte {
if len(allKeys) < 2 || r.Intn(100) < 10 {
// new key
key := make([]byte, r.Intn(50))
r.Read(key)
allKeys = append(allKeys, key)
return key
}
// use existing key
return allKeys[r.Intn(len(allKeys))]
}
var steps randTest
for i := 0; i < size; i++ {
step := randTestStep{op: r.Intn(opMax)}
switch step.op {
case opUpdate:
step.key = genKey()
step.value = make([]byte, 8)
binary.BigEndian.PutUint64(step.value, uint64(i))
case opGet, opDelete:
step.key = genKey()
}
steps = append(steps, step)
}
return reflect.ValueOf(steps)
}
func runRandTest(rt randTest) bool {
tr := New(common.Hash{})
values := make(map[string]string) // tracks content of the trie
for i, step := range rt {
fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n",
step.op, step.key, step.value, i)
switch step.op {
case opUpdate:
tr.Update(step.key, step.value)
values[string(step.key)] = string(step.value)
case opDelete:
tr.Delete(step.key)
delete(values, string(step.key))
case opGet:
v, _ := tr.Get(step.key)
want := values[string(step.key)]
if string(v) != want {
rt[i].err = fmt.Errorf("mismatch for key 0x%x, got 0x%x want 0x%x", step.key, v, want)
}
case opCommit:
case opHash:
tr.Hash()
case opReset:
hash := tr.Hash()
newtr := New(hash)
tr = newtr
case opItercheckhash:
// FIXME: restore for turbo-geth
/*
checktr := New(common.Hash{})
it := NewIterator(tr.NodeIterator(nil))
for it.Next() {
checktr.Update(it.Key, it.Value)
}
if tr.Hash() != checktr.Hash() {
rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash")
}
*/
case opCheckCacheInvariant:
}
// Abort the test on error.
if rt[i].err != nil {
return false
}
}
return true
}
func TestRandom(t *testing.T) {
t.Skip("should be restored. skipped for turbo-geth")
if err := quick.Check(runRandTest, nil); err != nil {
if cerr, ok := err.(*quick.CheckError); ok {
t.Fatalf("random test iteration %d failed: %s", cerr.Count, spew.Sdump(cerr.In))
}
t.Fatal(err)
}
}
func BenchmarkGet(b *testing.B) { benchGet(b, false) }
func BenchmarkGetDB(b *testing.B) { benchGet(b, true) }
func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) }
func BenchmarkUpdateLE(b *testing.B) { benchUpdate(b, binary.LittleEndian) }
const benchElemCount = 20000
func benchGet(b *testing.B, commit bool) {
trie := new(Trie)
var tmpdir string
var tmpdb ethdb.Database
if commit {
tmpdir, tmpdb = tempDB()
trie = New(common.Hash{})
}
k := make([]byte, 32)
for i := 0; i < benchElemCount; i++ {
binary.LittleEndian.PutUint64(k, uint64(i))
trie.Update(k, k)
}
binary.LittleEndian.PutUint64(k, benchElemCount/2)
b.ResetTimer()
for i := 0; i < b.N; i++ {
trie.Get(k)
}
b.StopTimer()
if commit {
tmpdb.Close()
os.RemoveAll(tmpdir)
}
}
func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie {
trie := newEmpty()
k := make([]byte, 32)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
e.PutUint64(k, uint64(i))
trie.Update(k, k)
}
return trie
}
// Benchmarks the trie hashing. Since the trie caches the result of any operation,
// we cannot use b.N as the number of hashing rouns, since all rounds apart from
// the first one will be NOOP. As such, we'll use b.N as the number of account to
// insert into the trie before measuring the hashing.
func BenchmarkHash(b *testing.B) {
// Make the random benchmark deterministic
random := rand.New(rand.NewSource(0))
// Create a realistic account trie to hash
addresses := make([][20]byte, b.N)
for i := 0; i < len(addresses); i++ {
for j := 0; j < len(addresses[i]); j++ {
addresses[i][j] = byte(random.Intn(256))
}
}
accounts := make([][]byte, len(addresses))
for i := 0; i < len(accounts); i++ {
var (
nonce = uint64(random.Int63())
balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
root = EmptyRoot
code = crypto.Keccak256(nil)
)
accounts[i], _ = rlp.EncodeToBytes([]interface{}{nonce, balance, root, code})
}
// Insert the accounts into the trie and hash it
trie := newEmpty()
for i := 0; i < len(addresses); i++ {
trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i])
}
b.ResetTimer()
b.ReportAllocs()
trie.Hash()
}
func tempDB() (string, ethdb.Database) {
dir, err := ioutil.TempDir("", "trie-bench")
if err != nil {
panic(fmt.Sprintf("can't create temporary directory: %v", err))
}
return dir, ethdb.MustOpen(dir)
}
func getString(trie *Trie, k string) []byte {
v, _ := trie.Get([]byte(k))
return v
}
func updateString(trie *Trie, k, v string) {
trie.Update([]byte(k), []byte(v))
}
func deleteString(trie *Trie, k string) {
trie.Delete([]byte(k))
}
func TestDeepHash(t *testing.T) {
acc := accounts.NewAccount()
prefix := "prefix"
var testdata = [][]struct {
key string
value string
}{
{{"key1", "value1"}},
{{"key1", "value1"}, {"key2", "value2"}},
{{"key1", "value1"}, {"key2", "value2"}, {"key3", "value3"}},
{{"key1", "value1"}, {"key2", "value2"}, {"\xffek3", "value3"}},
}
for i, keyVals := range testdata {
fmt.Println("Test", i)
trie := New(common.Hash{})
for _, keyVal := range keyVals {
trie.Update([]byte(keyVal.key), []byte(keyVal.value))
}
trie.PrintTrie()
hash1 := trie.Hash()
prefixTrie := New(common.Hash{})
prefixTrie.UpdateAccount([]byte(prefix), &acc)
for _, keyVal := range keyVals {
// Add a prefix to every key
prefixTrie.Update([]byte(prefix+keyVal.key), []byte(keyVal.value))
}
got2, hash2 := prefixTrie.DeepHash([]byte(prefix))
if !got2 {
t.Errorf("Expected DeepHash returning true, got false, testcase %d", i)
}
if hash1 != hash2 {
t.Errorf("DeepHash mistmatch: %x, expected %x, testcase %d", hash2, hash1, i)
}
}
}
func TestHashMapLeak(t *testing.T) {
debug.OverrideGetNodeData(true)
defer debug.OverrideGetNodeData(false)
// freeze the randomness
random := rand.New(rand.NewSource(794656320434))
// now create a trie with some small and some big leaves
trie := newEmpty()
nTouches := 256 * 10
var key [1]byte
var val [8]byte
for i := 0; i < nTouches; i++ {
key[0] = byte(random.Intn(256))
binary.BigEndian.PutUint64(val[:], random.Uint64())
option := random.Intn(3)
if option == 0 {
// small leaf node
trie.Update(key[:], val[:])
} else if option == 1 {
// big leaf node
trie.Update(key[:], crypto.Keccak256(val[:]))
} else {
// test delete as well
trie.Delete(key[:])
}
}
// check the size of trie's hash map
trie.Hash()
nHashes := trie.HashMapSize()
nExpected := 1 + 16 + 256/3
assert.GreaterOrEqual(t, nHashes, nExpected*7/8)
assert.LessOrEqual(t, nHashes, nExpected*9/8)
}
func genRandomByteArrayOfLen(length uint) []byte {
array := make([]byte, length)
for i := uint(0); i < length; i++ {
array[i] = byte(rand.Intn(256))
}
return array
}
func getAddressForIndex(index int) [20]byte {
var address [20]byte
binary.BigEndian.PutUint32(address[:], uint32(index))
return address
}
func TestCodeNodeValid(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
numberOfAccounts := 20
addresses := make([][20]byte, numberOfAccounts)
for i := 0; i < len(addresses); i++ {
addresses[i] = getAddressForIndex(i)
}
codeValues := make([][]byte, len(addresses))
for i := 0; i < len(addresses); i++ {
codeValues[i] = genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValues[i]))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(addresses[i][:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(addresses[i][:]), codeValues[i])
assert.Nil(t, err, "should successfully insert code")
}
for i := 0; i < len(addresses); i++ {
value, gotValue := trie.GetAccountCode(crypto.Keccak256(addresses[i][:]))
assert.True(t, gotValue, "should receive code value")
assert.True(t, bytes.Equal(value, codeValues[i]), "should receive the right code")
}
}
func TestCodeNodeUpdateNotExisting(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue)
assert.Nil(t, err, "should successfully insert code")
nonExistingAddress := getAddressForIndex(9999)
codeValue2 := genRandomByteArrayOfLen(128)
err = trie.UpdateAccountCode(crypto.Keccak256(nonExistingAddress[:]), codeValue2)
assert.Error(t, err, "should return an error for non existing acc")
}
func TestCodeNodeGetNotExistingAccount(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue)
assert.Nil(t, err, "should successfully insert code")
nonExistingAddress := getAddressForIndex(9999)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(nonExistingAddress[:]))
assert.True(t, gotValue, "should indicate that account doesn't exist at all (not just hashed)")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetHashedAccount(t *testing.T) {
trie := newEmpty()
address := getAddressForIndex(0)
fakeAccount := genRandomByteArrayOfLen(50)
fakeAccountHash := common.BytesToHash(crypto.Keccak256(fakeAccount))
hex := keybytesToHex(crypto.Keccak256(address[:]))
_, trie.root = trie.insert(trie.root, hex, hashNode{hash: fakeAccountHash[:]})
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.False(t, gotValue, "should indicate that account exists but hashed")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetExistingAccountNoCodeNotEmpty(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue := genRandomByteArrayOfLen(128)
codeHash := common.BytesToHash(crypto.Keccak256(codeValue))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.False(t, gotValue, "should indicate that account exists with code but the code isn't in cache")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeGetExistingAccountEmptyCode(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeHash := EmptyCodeHash
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.True(t, gotValue, "should indicate that account exists with empty code")
assert.Nil(t, value, "the value should be nil")
}
func TestCodeNodeWrongHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
codeValue2 := genRandomByteArrayOfLen(128)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue2)
assert.Error(t, err, "should NOT be able to insert code with wrong hash")
}
func TestCodeNodeUpdateAccountAndCodeValidHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err = trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue2)
assert.Nil(t, err, "should successfully insert code")
}
func TestCodeNodeUpdateAccountAndCodeInvalidHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
codeValue3 := genRandomByteArrayOfLen(128)
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err = trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue3)
assert.Error(t, err, "should NOT be able to insert code with wrong hash")
}
func TestCodeNodeUpdateAccountChangeCodeHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
codeValue2 := genRandomByteArrayOfLen(128)
codeHash2 := common.BytesToHash(crypto.Keccak256(codeValue2))
acc.CodeHash = codeHash2
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.Nil(t, value, "the value should reset after the code change happen")
assert.False(t, gotValue, "should indicate that the code isn't in the cache")
}
func TestCodeNodeUpdateAccountNoChangeCodeHash(t *testing.T) {
trie := newEmpty()
random := rand.New(rand.NewSource(0))
address := getAddressForIndex(0)
codeValue1 := genRandomByteArrayOfLen(128)
codeHash1 := common.BytesToHash(crypto.Keccak256(codeValue1))
balance := new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc := accounts.NewAccount()
acc.Nonce = uint64(random.Int63())
acc.Balance.SetFromBig(balance)
acc.Root = EmptyRoot
acc.CodeHash = codeHash1
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
err := trie.UpdateAccountCode(crypto.Keccak256(address[:]), codeValue1)
assert.Nil(t, err, "should successfully insert code")
acc.Nonce = uint64(random.Int63())
balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
acc.Balance.SetFromBig(balance)
trie.UpdateAccount(crypto.Keccak256(address[:]), &acc)
value, gotValue := trie.GetAccountCode(crypto.Keccak256(address[:]))
assert.Equal(t, codeValue1, value, "the value should NOT reset after account's non codehash had changed")
assert.True(t, gotValue, "should indicate that the code is still in the cache")
}