erigon-pulse/trie/proof_generator.go

808 lines
25 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Generation of block proofs for stateless clients
package trie
import (
"bytes"
"fmt"
"io"
"math/big"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ugorji/go/codec"
)
// TapeBuilder stores the sequence of values that is getting serialised using CBOR into a byte buffer
type TapeBuilder struct {
buffer bytes.Buffer // Byte buffer where the CBOR-encoded values end up being written
handle codec.CborHandle // Object used to control the behavior of CBOR encoding
encoder *codec.Encoder // Values are supplied to this object (via its Encode function)
}
// init allocates a new encoder, binding it to the buffer and the handle
func (t *TapeBuilder) init() {
t.encoder = codec.NewEncoder(&t.buffer, &t.handle)
}
const (
KeyTape = "keys"
ValueTape = "values"
NonceTape = "nonces"
BalanceTape = "balances"
HashesTape = "hashes"
CodesTape = "codes"
StructureTape = "structure"
)
// BlockWitnessBuilder accumulates data that can later be turned into a serialised
// version of the block witness
// All buffers are streams of CBOR-encoded items (not a CBOR array, but individual items back-to-back)
// `Keys` are binary strings
// `Values` are binary strings
// `Nonces` are uint64 integers
// `Balances` instances of big.Int
// `Hashes` are binary strings, all of size 32
// `Codes` are binary strings
// `Structure` are integers (for opcodes themselves), potentially followed by binary strings (key for EXTENSION) or
// integers (bitmaps for BRANCH or length of LEAF or number of hashes for HASH)
type BlockWitnessBuilder struct {
Keys TapeBuilder // Sequence of keys that are consumed by LEAF, LEAFHASH, ACCOUNTLEAF, and ACCOUNTLEAFHASH opcodes
Values TapeBuilder // Sequence of values that are consumed by LEAF, and LEAFHASH opcodes
Nonces TapeBuilder // Sequence of nonces that are consumed by ACCOUNTLEAF or ACCOUNTLEAFHASH opcodes
Balances TapeBuilder // Sequence of balances that are consumed by ACCOUNTLEAF or ACCOUNTLEAFHASH opcodes
Hashes TapeBuilder // Sequence of hashes that are consumed by the HASH opcode
Codes TapeBuilder // Sequence of contract codes that are consumed by the CODE opcode
Structure TapeBuilder // Sequence of opcodes and operands that define the structure of the witness
trace bool
}
// Instruction is "enum" type for defining the opcodes of the stack machine that reconstructs the structure of tries from Structure tape
type Instruction uint8
const (
// OpLeaf consumes key from key tape, value from value tape, creates leaf node and pushes it onto the node stack, its hash onto the hash stack
OpLeaf Instruction = iota
// OpLeafHash consumes key from key tape, value from value tape, computes hash of would-be leaf node and pushes it onto the hash stack
OpLeafHash
// OpExtension pops a node from the node stack, constructs extension node from it and its operand's key, and pushes this extension node onto
// the node stack, its hash onto the hash stack
OpExtension
// OpExtensionHash pops a hash from the hash stack, computes the hash of would-be extension node from it and its operand's key,
// and pushes this hash onto the hash stack
OpExtensionHash
// OpBranch has operand, which is a bitset representing digits in the branch node. Pops the children nodes from the node stack (the number of
// children is equal to the number of bits in the bitset), constructs branch node and pushes it onto the node stack, its hash onto the hash stack
OpBranch
// OpBranchHash has operand, which is a bitset representing digits in the branch node. Pops the children hashes from the hash stack (the number of
// children hashes is equal to the number of bits in the bitset), computes the hash of would-be branch node and pushes that hash onto the hash stack
OpBranchHash
// OpHash consumes given (in the operant) number of hash from the hash tape, and pushes them onto the stack. The first item consumed ends up
// the deepest on the stack, the last item consumed ends up on the top of the stack.
OpHash
// OpCode consumes bytecode item from the code tape, construct code node and pushes it onto the node stack, its hash onto the hash stack.
OpCode
// OpAccountLeaf consumes key from the key tape, and two values from the value tape, one for nonce, another for balance. It constructs
// an account node (without any storage and code) and pushes it onto the node stack, its hash onto the hash stack.
OpAccountLeaf
// OpAccountLeafHash consumes key from the key tape, and two values from the value tape, one for nonce, another for balance.
// It computes the hash of would-be account node (without any storage and code) and pushes it onto the hash stack.
OpAccountLeafHash
// OpEmptyRoot places nil onto the node stack, and empty root hash onto the hash stack.
OpEmptyRoot
)
// NewBlockWitnessBuilder creates an initialised block witness builder ready for use
func NewBlockWitnessBuilder(trace bool) *BlockWitnessBuilder {
var bwb BlockWitnessBuilder
bwb.trace = trace
bwb.Keys.init()
bwb.Values.init()
bwb.Nonces.init()
bwb.Balances.init()
bwb.Hashes.init()
bwb.Codes.init()
bwb.Structure.init()
return &bwb
}
// keyValue supplies the next key for the key tape
func (bwb *BlockWitnessBuilder) supplyKey(key []byte) error {
if err := bwb.Keys.encoder.Encode(key); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) supplyValue(value []byte) error {
if err := bwb.Values.encoder.Encode(value); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) supplyNonce(nonce uint64) error {
if err := bwb.Nonces.encoder.Encode(&nonce); err != nil {
return err
}
return nil
}
// TODO [Alexey] utilise CBOR tag to make this value as bit integer rather than just a string of bytes
func (bwb *BlockWitnessBuilder) supplyBalance(balance *big.Int) error {
var v = balance.Bytes()
if err := bwb.Balances.encoder.Encode(v); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) supplyCode(code []byte) error {
if err := bwb.Codes.encoder.Encode(code); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) supplyHash(hash common.Hash) error {
if err := bwb.Hashes.encoder.Encode(hash[:]); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) leaf(length int) error {
o := OpLeaf
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&length); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) leafHash(length int) error {
o := OpLeafHash
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&length); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) extension(key []byte) error {
o := OpExtension
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(key); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) extensionHash(key []byte) error {
o := OpExtensionHash
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(key); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) branch(set uint32) error {
o := OpBranch
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&set); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) branchHash(set uint32) error {
o := OpBranchHash
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&set); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) hash(number int) error {
o := OpHash
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&number); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) code() error {
o := OpCode
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) accountLeaf(length int, fieldSet uint32) error {
o := OpAccountLeaf
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&length); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&fieldSet); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) accountLeafHash(length int, fieldSet uint32) error {
o := OpAccountLeafHash
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&length); err != nil {
return err
}
if err := bwb.Structure.encoder.Encode(&fieldSet); err != nil {
return err
}
return nil
}
func (bwb *BlockWitnessBuilder) emptyRoot() error {
o := OpEmptyRoot
if err := bwb.Structure.encoder.Encode(&o); err != nil {
return err
}
return nil
}
// MakeBlockWitness constructs block witness from the given trie and the
// list of keys that need to be accessible in such witness
func (bwb *BlockWitnessBuilder) MakeBlockWitness(t *Trie, rs, storageRs *ResolveSet, codeMap map[common.Hash][]byte) error {
hr := newHasher(false)
defer returnHasherToPool(hr)
return bwb.makeBlockWitness(t.root, []byte{}, rs, storageRs, hr, true, codeMap)
}
func (bwb *BlockWitnessBuilder) makeBlockWitness(
nd node, hex []byte, rs, storageRs *ResolveSet, hr *hasher, force bool,
codeMap map[common.Hash][]byte,
) error {
switch n := nd.(type) {
case nil:
return nil
case valueNode:
return bwb.supplyValue(n)
case *shortNode:
h := n.Key
// Remove terminator
if h[len(h)-1] == 16 {
h = h[:len(h)-1]
}
hexVal := concat(hex, h...)
if err := bwb.makeBlockWitness(n.Val, hexVal, rs, storageRs, hr, false, codeMap); err != nil {
return err
}
switch v := n.Val.(type) {
case valueNode:
// Recursive invocation would have supplied the value
if err := bwb.supplyKey(n.Key); err != nil {
return err
}
if err := bwb.leaf(len(n.Key)); err != nil {
return err
}
case *accountNode:
if err := bwb.supplyKey(n.Key); err != nil {
return err
}
if v.IsEmptyRoot() && v.IsEmptyCodeHash() {
if err := bwb.accountLeaf(len(n.Key), 3); err != nil {
return err
}
} else {
if err := bwb.accountLeaf(len(n.Key), 15); err != nil {
return err
}
}
default:
if err := bwb.extension(n.Key); err != nil {
return err
}
}
return nil
case *duoNode:
hashOnly := rs.HashOnly(hex) // Save this because rs can move on to other keys during the recursive invocation
if hashOnly {
var hn common.Hash
hr.hash(n, force, hn[:])
if err := bwb.supplyHash(hn); err != nil {
return err
}
return bwb.hash(1)
}
i1, i2 := n.childrenIdx()
hex1 := make([]byte, len(hex)+1)
copy(hex1, hex)
hex1[len(hex)] = i1
hex2 := make([]byte, len(hex)+1)
copy(hex2, hex)
hex2[len(hex)] = i2
if err := bwb.makeBlockWitness(n.child1, hex1, rs, storageRs, hr, false, codeMap); err != nil {
return err
}
if err := bwb.makeBlockWitness(n.child2, hex2, rs, storageRs, hr, false, codeMap); err != nil {
return err
}
return bwb.branch(n.mask)
case *fullNode:
hashOnly := rs.HashOnly(hex) // Save this because rs can move on to other keys during the recursive invocation
if hashOnly {
var hn common.Hash
hr.hash(n, len(hex) == 0, hn[:])
if err := bwb.supplyHash(hn); err != nil {
return err
}
return bwb.hash(1)
}
var set uint32
for i, child := range n.Children {
if child != nil {
if err := bwb.makeBlockWitness(child, concat(hex, byte(i)), rs, storageRs, hr, false, codeMap); err != nil {
return err
}
set |= (uint32(1) << uint(i))
}
}
return bwb.branch(set)
case *accountNode:
hashOnly := storageRs.HashOnly(hex) // Save this because rs can move on to other keys during the recursive invocation
if !n.IsEmptyRoot() || !n.IsEmptyCodeHash() {
code, ok := codeMap[n.CodeHash]
if ok {
if err := bwb.supplyCode(code); err != nil {
return err
}
if err := bwb.code(); err != nil {
return err
}
} else {
if err := bwb.supplyHash(n.CodeHash); err != nil {
return err
}
if err := bwb.hash(1); err != nil {
return err
}
}
if hashOnly {
if err := bwb.supplyHash(n.Root); err != nil {
return err
}
if err := bwb.hash(1); err != nil {
return err
}
} else {
if n.storage == nil {
if err := bwb.emptyRoot(); err != nil {
return err
}
} else {
// Here we substitute rs parameter for storageRs, because it needs to become the default
if err := bwb.makeBlockWitness(n.storage, hex, storageRs, storageRs, hr, true, codeMap); err != nil {
return err
}
}
}
}
if err := bwb.supplyNonce(n.Nonce); err != nil {
return err
}
if err := bwb.supplyBalance(&n.Balance); err != nil {
return err
}
return nil
case hashNode:
hashOnly := rs.HashOnly(hex)
if hashOnly {
var hn common.Hash
copy(hn[:], []byte(n))
if err := bwb.supplyHash(hn); err != nil {
return err
}
return bwb.hash(1)
}
return fmt.Errorf("unexpected hashNode: %s, at hex: %x (%d)", n, hex, len(hex))
default:
return fmt.Errorf("unexpected node: %T", nd)
}
}
// WriteTo creates serialised representation of the block witness
// and writes it into the given writer
func (bwb *BlockWitnessBuilder) WriteTo(w io.Writer) error {
// Calculate the lengths of all the tapes and write them as an array
var lens = map[string]int{
KeyTape: bwb.Keys.buffer.Len(),
ValueTape: bwb.Values.buffer.Len(),
NonceTape: bwb.Nonces.buffer.Len(),
BalanceTape: bwb.Balances.buffer.Len(),
HashesTape: bwb.Hashes.buffer.Len(),
CodesTape: bwb.Codes.buffer.Len(),
StructureTape: bwb.Structure.buffer.Len(),
}
var handle codec.CborHandle
handle.EncodeOptions.Canonical = true
encoder := codec.NewEncoder(w, &handle)
if err := encoder.Encode(&lens); err != nil {
return err
}
if _, err := bwb.Keys.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Values.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Nonces.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Balances.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Hashes.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Codes.buffer.WriteTo(w); err != nil {
return err
}
if _, err := bwb.Structure.buffer.WriteTo(w); err != nil {
return err
}
return nil
}
// CborBytesTape implements BytesTape and takes values from CBOR-encoded slice of bytes
type CborBytesTape struct {
decoder *codec.Decoder // Values are decoded by this object
}
// NewCborBytesTape creates new tape
func NewCborBytesTape(in []byte) *CborBytesTape {
var handle codec.CborHandle // Object used to control the behavior of CBOR decoding
return &CborBytesTape{decoder: codec.NewDecoderBytes(in, &handle)}
}
// Next belongs to the BytesTape interface, and decodes the next byte slice
func (cbt *CborBytesTape) Next() ([]byte, error) {
var b []byte
if err := cbt.decoder.Decode(&b); err != nil {
return nil, err
}
return b, nil
}
// CborUint64Tape implements Uint64Tape and takes values from CBOR-encoded integers
type CborUint64Tape struct {
decoder *codec.Decoder // Values are decoded by this object
}
// NewCborUint64Tape creates new tape
func NewCborUint64Tape(in []byte) *CborUint64Tape {
var handle codec.CborHandle // Object used to control the behavior of CBOR decoding
return &CborUint64Tape{decoder: codec.NewDecoderBytes(in, &handle)}
}
// Next belongs to the Uint64Tape interface, and decodes the next integer
func (cut *CborUint64Tape) Next() (uint64, error) {
var u uint64
if err := cut.decoder.Decode(&u); err != nil {
return 0, err
}
return u, nil
}
// CborBigIntTape implements BigIntTape and takes values from CBOR-encoded *big.Int
type CborBigIntTape struct {
decoder *codec.Decoder // Values are decoded by this object
}
// NewCborBigIntTape creates new tape
func NewCborBigIntTape(in []byte) *CborBigIntTape {
var handle codec.CborHandle // Object used to control the behavior of CBOR decoding
return &CborBigIntTape{decoder: codec.NewDecoderBytes(in, &handle)}
}
// Next belongs to the Uint64Tape interface, and decodes the next big.Int
func (cut *CborBigIntTape) Next() (*big.Int, error) {
var b []byte
if err := cut.decoder.Decode(&b); err != nil {
return nil, err
}
return big.NewInt(0).SetBytes(b), nil
}
// CborHashTape implements BytesTape and takes values from CBOR-encoded hashes common.Hash
type CborHashTape struct {
decoder *codec.Decoder // Values are decoded by this object
}
// NewCborHashTape creates new tape
func NewCborHashTape(in []byte) *CborHashTape {
var handle codec.CborHandle // Object used to control the behavior of CBOR decoding
return &CborHashTape{decoder: codec.NewDecoderBytes(in, &handle)}
}
// Next belongs to the BytesTape interface, and decodes the next byte slice
func (cht *CborHashTape) Next() (common.Hash, error) {
var hash common.Hash
var b []byte
if err := cht.decoder.Decode(&b); err != nil {
return common.Hash{}, err
}
copy(hash[:], b)
return hash, nil
}
// BlockWitnessToTrie creates trie and code map, given serialised representation of block witness
func BlockWitnessToTrie(bw []byte, trace bool) (*Trie, map[common.Hash][]byte, error) {
codeMap := make(map[common.Hash][]byte)
var lens map[string]int
var handle codec.CborHandle
decoder := codec.NewDecoderBytes(bw, &handle)
if err := decoder.Decode(&lens); err != nil {
return nil, nil, err
}
hb := NewHashBuilder()
// It is important to read the tapes in the same order as they were written
startOffset := decoder.NumBytesRead()
endOffset := startOffset + lens[KeyTape]
hb.SetKeyTape(NewCborBytesTape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[ValueTape]
hb.SetValueTape(NewCborBytesTape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[NonceTape]
hb.SetNonceTape(NewCborUint64Tape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[BalanceTape]
hb.SetBalanceTape(NewCborBigIntTape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[HashesTape]
hb.SetHashTape(NewCborHashTape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[CodesTape]
hb.SetCodeTape(NewCborBytesTape(bw[startOffset:endOffset]))
startOffset = endOffset
endOffset = startOffset + lens[StructureTape]
structureB := bw[startOffset:endOffset]
decoder.ResetBytes(structureB)
for decoder.NumBytesRead() < len(structureB) {
var opcode Instruction
if err := decoder.Decode(&opcode); err != nil {
return nil, nil, err
}
switch opcode {
case OpLeaf:
if trace {
fmt.Printf("LEAF ")
}
var length int
if err := decoder.Decode(&length); err != nil {
return nil, nil, err
}
if err := hb.leaf(length); err != nil {
return nil, nil, err
}
case OpLeafHash:
if trace {
fmt.Printf("LEAFHASH ")
}
var length int
if err := decoder.Decode(&length); err != nil {
return nil, nil, err
}
if err := hb.leafHash(length); err != nil {
return nil, nil, err
}
case OpExtension:
if trace {
fmt.Printf("EXTENSION ")
}
var key []byte
if err := decoder.Decode(&key); err != nil {
return nil, nil, err
}
if err := hb.extension(key); err != nil {
return nil, nil, err
}
case OpExtensionHash:
if trace {
fmt.Printf("EXTENSIONHASH ")
}
var key []byte
if err := decoder.Decode(&key); err != nil {
return nil, nil, err
}
if err := hb.extensionHash(key); err != nil {
return nil, nil, err
}
case OpBranch:
if trace {
fmt.Printf("BRANCH ")
}
var set uint16
if err := decoder.Decode(&set); err != nil {
return nil, nil, err
}
if err := hb.branch(set); err != nil {
return nil, nil, err
}
case OpBranchHash:
if trace {
fmt.Printf("BRANCHHASH ")
}
var set uint16
if err := decoder.Decode(&set); err != nil {
return nil, nil, err
}
if err := hb.branchHash(set); err != nil {
return nil, nil, err
}
case OpHash:
if trace {
fmt.Printf("HASH ")
}
var number int
if err := decoder.Decode(&number); err != nil {
return nil, nil, err
}
if err := hb.hash(number); err != nil {
return nil, nil, err
}
case OpCode:
if trace {
fmt.Printf("CODE ")
}
if code, codeHash, err := hb.code(); err == nil {
codeMap[codeHash] = code
} else {
return nil, nil, err
}
case OpAccountLeaf:
var length int
var fieldSet uint32
if err := decoder.Decode(&length); err != nil {
return nil, nil, err
}
if err := decoder.Decode(&fieldSet); err != nil {
return nil, nil, err
}
if trace {
fmt.Printf("ACCOUNTLEAF(%b) ", fieldSet)
}
if err := hb.accountLeaf(length, fieldSet); err != nil {
return nil, nil, err
}
case OpAccountLeafHash:
if trace {
fmt.Printf("ACCOUNTLEAFHASH ")
}
var length int
var fieldSet uint32
if err := decoder.Decode(&length); err != nil {
return nil, nil, err
}
if err := decoder.Decode(&fieldSet); err != nil {
return nil, nil, err
}
if err := hb.accountLeafHash(length, fieldSet); err != nil {
return nil, nil, err
}
case OpEmptyRoot:
if trace {
fmt.Printf("EMPTYROOT ")
}
hb.emptyRoot()
default:
return nil, nil, fmt.Errorf("unknown opcode: %d", opcode)
}
}
if trace {
fmt.Printf("\n")
}
r := hb.root()
tr := New(hb.rootHash())
tr.root = r
return tr, codeMap, nil
}
// ProofGenerator is the structure that accumulates the set of keys that were read or changes (touched) during
// the execution of a block. It also tracks the contract codes that were created and used during the execution
// of a block
type ProofGenerator struct {
touches [][]byte // Read/change set of account keys (account hashes)
storageTouches [][]byte // Read/change set of storage keys (account hashes concatenated with storage key hashes)
proofCodes map[common.Hash][]byte // Contract codes that have been accessed
createdCodes map[common.Hash][]byte // Contract codes that were created (deployed)
}
// NewProofGenerator creates new ProofGenerator and initialised its maps
func NewProofGenerator() *ProofGenerator {
return &ProofGenerator{
proofCodes: make(map[common.Hash][]byte),
createdCodes: make(map[common.Hash][]byte),
}
}
// AddTouch adds a key (in KEY encoding) into the read/change set of account keys
func (pg *ProofGenerator) AddTouch(touch []byte) {
pg.touches = append(pg.touches, common.CopyBytes(touch))
}
// AddStorageTouch adds a key (in KEY encoding) into the read/change set of storage keys
func (pg *ProofGenerator) AddStorageTouch(touch []byte) {
pg.storageTouches = append(pg.storageTouches, common.CopyBytes(touch))
}
// ExtractTouches returns accumulated read/change sets and clears them for the next block's execution
func (pg *ProofGenerator) ExtractTouches() ([][]byte, [][]byte) {
touches := pg.touches
storageTouches := pg.storageTouches
pg.touches = nil
pg.storageTouches = nil
return touches, storageTouches
}
// ExtractCodeMap returns the map of all contract codes that were required during the block's execution
// but were not created during that same block. It also clears the maps for the next block's execution
func (pg *ProofGenerator) ExtractCodeMap() map[common.Hash][]byte {
proofCodes := pg.proofCodes
pg.proofCodes = make(map[common.Hash][]byte)
pg.createdCodes = make(map[common.Hash][]byte)
return proofCodes
}
// ReadCode registers that given contract code has been accessed during current block's execution
func (pg *ProofGenerator) ReadCode(codeHash common.Hash, code []byte) {
if _, ok := pg.createdCodes[codeHash]; !ok {
pg.proofCodes[codeHash] = code
}
}
// CreateCode registers that given contract code has been created (deployed) during current block's execution
func (pg *ProofGenerator) CreateCode(codeHash common.Hash, code []byte) {
if _, ok := pg.proofCodes[codeHash]; !ok {
pg.createdCodes[codeHash] = code
}
}