erigon-pulse/recsplit/recsplit.go
Alex Sharov 5b7f67deae
Snapshot naming (#163)
* save

* save

* save

* save

* save

* save
2021-11-15 14:19:56 +00:00

615 lines
22 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
Copyright 2021 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package recsplit
import (
"bufio"
"encoding/binary"
"fmt"
"io/ioutil"
"math"
"math/bits"
"os"
"github.com/ledgerwatch/erigon-lib/etl"
"github.com/ledgerwatch/erigon-lib/recsplit/eliasfano16"
"github.com/ledgerwatch/erigon-lib/recsplit/eliasfano32"
"github.com/spaolacci/murmur3"
)
var ASSERT = false
var ErrCollision = fmt.Errorf("duplicate key")
const RecSplitLogPrefix = "recsplit"
const MaxLeafSize = 24
/** David Stafford's (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
* 13th variant of the 64-bit finalizer function in Austin Appleby's
* MurmurHash3 (https://github.com/aappleby/smhasher).
*
* @param z a 64-bit integer.
* @return a 64-bit integer obtained by mixing the bits of `z`.
*/
func remix(z uint64) uint64 {
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
return z ^ (z >> 31)
}
// RecSplit is the implementation of Recursive Split algorithm for constructing perfect hash mapping, described in
// https://arxiv.org/pdf/1910.06416.pdf Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna.
// Recsplit: Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX),
// pages 175185. SIAM, 2020.
type RecSplit struct {
bucketSize int
keyExpectedCount uint64 // Number of keys in the hash table
keysAdded uint64 // Number of keys actually added to the recSplit (to check the match with keyExpectedCount)
bucketCount uint64 // Number of buckets
hasher murmur3.Hash128 // Salted hash function to use for splitting into initial buckets and mapping to 64-bit fingerprints
bucketCollector *etl.Collector // Collector that sorts by buckets
enums bool // Whether to build two level index with perfect hash table pointing to enumeration and enumeration pointing to offsets
offsetCollector *etl.Collector // Collector that sorts by offsets
built bool // Flag indicating that the hash function has been built and no more keys can be added
currentBucketIdx uint64 // Current bucket being accumulated
currentBucket []uint64 // 64-bit fingerprints of keys in the current bucket accumulated before the recsplit is performed for that bucket
currentBucketOffs []uint64 // Index offsets for the current bucket
maxOffset uint64 // Maximum value of index offset to later decide how many bytes to use for the encoding
gr GolombRice // Helper object to encode the tree of hash function salts using Golomb-Rice code.
// Helper object to encode the sequence of cumulative number of keys in the buckets
// and the sequence of of cumulative bit offsets of buckets in the Golomb-Rice code.
ef eliasfano16.DoubleEliasFano
offsetEf *eliasfano32.EliasFano // Elias Fano instance for encoding the offsets
bucketSizeAcc []uint64 // Bucket size accumulator
bucketPosAcc []uint64 // Accumulator for position of every bucket in the encoding of the hash function
leafSize uint16 // Leaf size for recursive split algorithm
primaryAggrBound uint16 // The lower bound for primary key aggregation (computed from leafSize)
secondaryAggrBound uint16 // The lower bound for secondary key aggregation (computed from leadSize)
startSeed []uint64
golombRice []uint32
buffer []uint64
offsetBuffer []uint64
count []uint16
salt uint32 // Murmur3 hash used for converting keys to 64-bit values and assigning to buckets
collision bool
tmpDir string
indexFile string
indexF *os.File
indexW *bufio.Writer
bytesPerRec int
numBuf [8]byte
trace bool
prevOffset uint64 // Previously added offset (for calculating minDelta for Elias Fano encoding of "enum -> offset" index)
minDelta uint64 // minDelta for Elias Fano encoding of "enum -> offset" index
}
type RecSplitArgs struct {
KeyCount int
BucketSize int
Salt uint32 // Hash seed (salt) for the hash function used for allocating the initial buckets - need to be generated randomly
LeafSize uint16
IndexFile string // File name where the index and the minimal perfect hash function will be written to
TmpDir string
StartSeed []uint64 // For each level of recursive split, the hash seed (salt) used for that level - need to be generated randomly and be large enough to accomodate all the levels
Enums bool // Whether two level index needs to be built, where perfect hash map points to an enumeration, and enumeration points to offsets
}
// NewRecSplit creates a new RecSplit instance with given number of keys and given bucket size
// Typical bucket size is 100 - 2000, larger bucket sizes result in smaller representations of hash functions, at a cost of slower access
// salt parameters is used to randomise the hash function construction, to ensure that different Erigon instances (nodes)
// are likely to use different hash function, to collision attacks are unlikely to slow down any meaningful number of nodes at the same time
func NewRecSplit(args RecSplitArgs) (*RecSplit, error) {
bucketCount := (args.KeyCount + args.BucketSize - 1) / args.BucketSize
rs := &RecSplit{bucketSize: args.BucketSize, keyExpectedCount: uint64(args.KeyCount), bucketCount: uint64(bucketCount)}
rs.salt = args.Salt
rs.hasher = murmur3.New128WithSeed(rs.salt)
rs.tmpDir = args.TmpDir
rs.indexFile = args.IndexFile
rs.bucketCollector = etl.NewCollector(RecSplitLogPrefix, rs.tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize))
rs.enums = args.Enums
if args.Enums {
rs.offsetCollector = etl.NewCollector(RecSplitLogPrefix, rs.tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize))
}
rs.currentBucket = make([]uint64, 0, args.BucketSize)
rs.currentBucketOffs = make([]uint64, 0, args.BucketSize)
rs.maxOffset = 0
rs.bucketSizeAcc = make([]uint64, 1, bucketCount+1)
rs.bucketPosAcc = make([]uint64, 1, bucketCount+1)
if args.LeafSize > MaxLeafSize {
return nil, fmt.Errorf("exceeded max leaf size %d: %d", MaxLeafSize, args.LeafSize)
}
rs.leafSize = args.LeafSize
rs.primaryAggrBound = rs.leafSize * uint16(math.Max(2, math.Ceil(0.35*float64(rs.leafSize)+1./2.)))
if rs.leafSize < 7 {
rs.secondaryAggrBound = rs.primaryAggrBound * 2
} else {
rs.secondaryAggrBound = rs.primaryAggrBound * uint16(math.Ceil(0.21*float64(rs.leafSize)+9./10.))
}
rs.startSeed = args.StartSeed
rs.count = make([]uint16, rs.secondaryAggrBound)
return rs, nil
}
func (rs *RecSplit) Close() {
if rs.indexF != nil {
rs.indexF.Close()
}
if rs.bucketCollector != nil {
rs.bucketCollector.Close()
}
if rs.offsetCollector != nil {
rs.offsetCollector.Close()
}
}
func (rs *RecSplit) SetTrace(trace bool) {
rs.trace = trace
}
// remap converts the number x which is assumed to be uniformly distributed over the range [0..2^64) to the number that is uniformly
// distributed over the range [0..n)
func remap(x uint64, n uint64) uint64 {
hi, _ := bits.Mul64(x, n)
return hi
}
const mask48 uint64 = (1 << 48) - 1
// remap converts the number x which is assumed to be uniformly distributed over the range [0..2^64) to the number that is uniformly
// distributed over the range [0..n), under assumption that n is less than 2^16
func remap16(x uint64, n uint16) uint16 {
return uint16(((x & mask48) * uint64(n)) >> 48)
}
// ResetNextSalt resets the RecSplit and uses the next salt value to try to avoid collisions
// when mapping keys to 64-bit values
func (rs *RecSplit) ResetNextSalt() {
rs.collision = false
rs.keysAdded = 0
rs.salt++
rs.hasher = murmur3.New128WithSeed(rs.salt)
rs.bucketCollector = etl.NewCollector(RecSplitLogPrefix, rs.tmpDir, etl.NewSortableBuffer(etl.BufferOptimalSize))
rs.currentBucket = rs.currentBucket[:0]
rs.currentBucketOffs = rs.currentBucketOffs[:0]
rs.maxOffset = 0
rs.bucketSizeAcc = rs.bucketSizeAcc[:1] // First entry is always zero
rs.bucketPosAcc = rs.bucketPosAcc[:0] // First entry is always zero
}
func splitParams(m uint16, leafSize uint16, primaryAggrBound uint16, secondaryAggrBound uint16) (fanout, unit uint16) {
if m > secondaryAggrBound { // High-level aggregation (fanout 2)
unit = secondaryAggrBound * (((m+1)/2 + secondaryAggrBound - 1) / secondaryAggrBound)
fanout = 2
} else if m > primaryAggrBound { // Second-level aggregation
unit = primaryAggrBound
fanout = (m + primaryAggrBound - 1) / primaryAggrBound
} else { // First-level aggregation
unit = leafSize
fanout = (m + leafSize - 1) / leafSize
}
return
}
func computeGolombRice(m uint16, table []uint32, leafSize uint16, primaryAggrBound uint16, secondaryAggrBound uint16) {
fanout, unit := splitParams(m, leafSize, primaryAggrBound, secondaryAggrBound)
k := make([]uint16, fanout)
k[fanout-1] = m
for i := uint16(0); i < fanout-1; i++ {
k[i] = unit
k[fanout-1] -= k[i]
}
sqrt_prod := float64(1)
for i := uint16(0); i < fanout; i++ {
sqrt_prod *= math.Sqrt(float64(k[i]))
}
p := math.Sqrt(float64(m)) / (math.Pow(2*math.Pi, (float64(fanout)-1.)/2.0) * sqrt_prod)
golombRiceLength := uint32(math.Ceil(math.Log2(-math.Log((math.Sqrt(5)+1.0)/2.0) / math.Log1p(-p)))) // log2 Golomb modulus
if golombRiceLength > 0x1F {
panic("golombRiceLength > 0x1F")
}
table[m] = golombRiceLength << 27
for i := uint16(0); i < fanout; i++ {
golombRiceLength += table[k[i]] & 0xFFFF
}
if golombRiceLength > 0xFFFF {
panic("golombRiceLength > 0xFFFF")
}
table[m] |= golombRiceLength // Sum of Golomb-Rice codeslengths in the subtree, stored in the lower 16 bits
nodes := uint32(1)
for i := uint16(0); i < fanout; i++ {
nodes += (table[k[i]] >> 16) & 0x7FF
}
if leafSize >= 3 && nodes > 0x7FF {
panic("rs.leafSize >= 3 && nodes > 0x7FF")
}
table[m] |= nodes << 16
}
// golombParam returns the optimal Golomb parameter to use for encoding
// salt for the part of the hash function separating m elements. It is based on
// calculations with assumptions that we draw hash functions at random
func (rs *RecSplit) golombParam(m uint16) int {
s := uint16(len(rs.golombRice))
for m >= s {
rs.golombRice = append(rs.golombRice, 0)
// For the case where bucket is larger than planned
if s == 0 {
rs.golombRice[0] = (bijMemo[0] << 27) | bijMemo[0]
} else if s <= rs.leafSize {
rs.golombRice[s] = (bijMemo[s] << 27) | (uint32(1) << 16) | bijMemo[s]
} else {
computeGolombRice(s, rs.golombRice, rs.leafSize, rs.primaryAggrBound, rs.secondaryAggrBound)
}
s++
}
return int(rs.golombRice[m] >> 27)
}
// Add key to the RecSplit. There can be many more keys than what fits in RAM, and RecSplit
// spills data onto disk to accomodate that. The key gets copied by the collector, therefore
// the slice underlying key is not getting accessed by RecSplit after this invocation.
func (rs *RecSplit) AddKey(key []byte, offset uint64) error {
if rs.built {
return fmt.Errorf("cannot add keys after perfect hash function had been built")
}
rs.hasher.Reset()
rs.hasher.Write(key) //nolint:errcheck
hi, lo := rs.hasher.Sum128()
var bucketKey [16]byte
binary.BigEndian.PutUint64(bucketKey[:], remap(hi, rs.bucketCount))
binary.BigEndian.PutUint64(bucketKey[8:], lo)
var offsetVal [8]byte
binary.BigEndian.PutUint64(offsetVal[:], offset)
if offset > rs.maxOffset {
rs.maxOffset = offset
}
if rs.keysAdded > 0 {
delta := offset - rs.prevOffset
if rs.keysAdded == 1 || delta < rs.minDelta {
rs.minDelta = delta
}
}
if rs.enums {
if err := rs.offsetCollector.Collect(offsetVal[:], nil); err != nil {
return err
}
var keyIdx [8]byte
binary.BigEndian.PutUint64(keyIdx[:], rs.keysAdded)
if err := rs.bucketCollector.Collect(bucketKey[:], keyIdx[:]); err != nil {
return err
}
} else {
if err := rs.bucketCollector.Collect(bucketKey[:], offsetVal[:]); err != nil {
return err
}
}
rs.keysAdded++
rs.prevOffset = offset
return nil
}
func (rs *RecSplit) recsplitCurrentBucket() error {
// Extend rs.bucketSizeAcc to accomodate current bucket index + 1
for len(rs.bucketSizeAcc) <= int(rs.currentBucketIdx)+1 {
rs.bucketSizeAcc = append(rs.bucketSizeAcc, rs.bucketSizeAcc[len(rs.bucketSizeAcc)-1])
}
rs.bucketSizeAcc[int(rs.currentBucketIdx)+1] += uint64(len(rs.currentBucket))
// Sets of size 0 and 1 are not further processed, just write them to index
if len(rs.currentBucket) > 1 {
for i, key := range rs.currentBucket[1:] {
if key == rs.currentBucket[i] {
rs.collision = true
return fmt.Errorf("%w: %x", ErrCollision, key)
}
}
bitPos := rs.gr.bitCount
if rs.buffer == nil {
rs.buffer = make([]uint64, len(rs.currentBucket))
rs.offsetBuffer = make([]uint64, len(rs.currentBucketOffs))
} else {
for len(rs.buffer) < len(rs.currentBucket) {
rs.buffer = append(rs.buffer, 0)
rs.offsetBuffer = append(rs.offsetBuffer, 0)
}
}
unary, err := rs.recsplit(0 /* level */, rs.currentBucket, rs.currentBucketOffs, nil /* unary */)
if err != nil {
return err
}
rs.gr.appendUnaryAll(unary)
if rs.trace {
fmt.Printf("recsplitBucket(%d, %d, bitsize = %d)\n", rs.currentBucketIdx, len(rs.currentBucket), rs.gr.bitCount-bitPos)
}
} else {
for _, offset := range rs.currentBucketOffs {
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return err
}
}
}
// Extend rs.bucketPosAcc to accomodate current bucket index + 1
for len(rs.bucketPosAcc) <= int(rs.currentBucketIdx)+1 {
rs.bucketPosAcc = append(rs.bucketPosAcc, rs.bucketPosAcc[len(rs.bucketPosAcc)-1])
}
rs.bucketPosAcc[int(rs.currentBucketIdx)+1] = uint64(rs.gr.Bits())
// clear for the next buckey
rs.currentBucket = rs.currentBucket[:0]
rs.currentBucketOffs = rs.currentBucketOffs[:0]
return nil
}
// recsplit applies recSplit algorithm to the given bucket
func (rs *RecSplit) recsplit(level int, bucket []uint64, offsets []uint64, unary []uint64) ([]uint64, error) {
if rs.trace {
fmt.Printf("recsplit(%d, %d, %x)\n", level, len(bucket), bucket)
}
// Pick initial salt for this level of recursive split
salt := rs.startSeed[level]
m := uint16(len(bucket))
if m <= rs.leafSize {
// No need to build aggregation levels - just find find bijection
var mask uint32
for {
mask = 0
var fail bool
for i := uint16(0); !fail && i < m; i++ {
bit := uint32(1) << remap16(remix(bucket[i]+salt), m)
if mask&bit != 0 {
fail = true
} else {
mask |= bit
}
}
if !fail {
break
}
salt++
}
for i := uint16(0); i < m; i++ {
j := remap16(remix(bucket[i]+salt), m)
rs.offsetBuffer[j] = offsets[i]
}
for _, offset := range rs.offsetBuffer[:m] {
binary.BigEndian.PutUint64(rs.numBuf[:], offset)
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return nil, err
}
}
salt -= rs.startSeed[level]
log2golomb := rs.golombParam(m)
if rs.trace {
fmt.Printf("encode bij %d with log2golomn %d at p = %d\n", salt, log2golomb, rs.gr.bitCount)
}
rs.gr.appendFixed(salt, log2golomb)
unary = append(unary, salt>>log2golomb)
} else {
fanout, unit := splitParams(m, rs.leafSize, rs.primaryAggrBound, rs.secondaryAggrBound)
count := rs.count
for {
for i := uint16(0); i < fanout-1; i++ {
count[i] = 0
}
var fail bool
for i := uint16(0); i < m; i++ {
count[remap16(remix(bucket[i]+salt), m)/unit]++
}
for i := uint16(0); i < fanout-1; i++ {
fail = fail || (count[i] != unit)
}
if !fail {
break
}
salt++
}
for i, c := uint16(0), uint16(0); i < fanout; i++ {
count[i] = c
c += unit
}
for i := uint16(0); i < m; i++ {
j := remap16(remix(bucket[i]+salt), m) / unit
rs.buffer[count[j]] = bucket[i]
rs.offsetBuffer[count[j]] = offsets[i]
count[j]++
}
copy(bucket, rs.buffer)
copy(offsets, rs.offsetBuffer)
salt -= rs.startSeed[level]
log2golomb := rs.golombParam(m)
if rs.trace {
fmt.Printf("encode fanout %d: %d with log2golomn %d at p = %d\n", fanout, salt, log2golomb, rs.gr.bitCount)
}
rs.gr.appendFixed(salt, log2golomb)
unary = append(unary, salt>>log2golomb)
var err error
var i uint16
for i = 0; i < m-unit; i += unit {
if unary, err = rs.recsplit(level+1, bucket[i:i+unit], offsets[i:i+unit], unary); err != nil {
return nil, err
}
}
if m-i > 1 {
if unary, err = rs.recsplit(level+1, bucket[i:], offsets[i:], unary); err != nil {
return nil, err
}
} else if m-i == 1 {
binary.BigEndian.PutUint64(rs.numBuf[:], offsets[i])
if _, err := rs.indexW.Write(rs.numBuf[8-rs.bytesPerRec:]); err != nil {
return nil, err
}
}
}
return unary, nil
}
// loadFuncBucket is required to satisfy the type etl.LoadFunc type, to use with collector.Load
func (rs *RecSplit) loadFuncBucket(k, v []byte, _ etl.CurrentTableReader, _ etl.LoadNextFunc) error {
// k is the BigEndian encoding of the bucket number, and the v is the key that is assigned into that bucket
bucketIdx := binary.BigEndian.Uint64(k)
if rs.currentBucketIdx != bucketIdx {
if rs.currentBucketIdx != math.MaxUint64 {
if err := rs.recsplitCurrentBucket(); err != nil {
return err
}
}
rs.currentBucketIdx = bucketIdx
}
rs.currentBucket = append(rs.currentBucket, binary.BigEndian.Uint64(k[8:]))
rs.currentBucketOffs = append(rs.currentBucketOffs, binary.BigEndian.Uint64(v))
return nil
}
func (rs *RecSplit) loadFuncOffset(k, _ []byte, _ etl.CurrentTableReader, _ etl.LoadNextFunc) error {
offset := binary.BigEndian.Uint64(k)
rs.offsetEf.AddOffset(offset)
return nil
}
// Build has to be called after all the keys have been added, and it initiates the process
// of building the perfect hash function and writing index into a file
func (rs *RecSplit) Build() error {
if rs.built {
return fmt.Errorf("already built")
}
if rs.keysAdded != rs.keyExpectedCount {
return fmt.Errorf("expected keys %d, got %d", rs.keyExpectedCount, rs.keysAdded)
}
var err error
if rs.indexF, err = os.Create(rs.indexFile); err != nil {
return fmt.Errorf("create index file %s: %w", rs.indexFile, err)
}
defer rs.indexF.Close()
rs.indexW = bufio.NewWriterSize(rs.indexF, etl.BufIOSize)
// Write number of keys
binary.BigEndian.PutUint64(rs.numBuf[:], rs.keysAdded)
if _, err = rs.indexW.Write(rs.numBuf[:]); err != nil {
return fmt.Errorf("write number of keys: %w", err)
}
// Write number of bytes per index record
rs.bytesPerRec = (bits.Len64(rs.maxOffset) + 7) / 8
if err = rs.indexW.WriteByte(byte(rs.bytesPerRec)); err != nil {
return fmt.Errorf("write bytes per record: %w", err)
}
rs.currentBucketIdx = math.MaxUint64 // To make sure 0 bucket is detected
defer rs.bucketCollector.Close()
if err := rs.bucketCollector.Load(nil, "", rs.loadFuncBucket, etl.TransformArgs{}); err != nil {
return err
}
if len(rs.currentBucket) > 0 {
if err := rs.recsplitCurrentBucket(); err != nil {
return err
}
}
if ASSERT {
rs.indexW.Flush()
rs.indexF.Seek(0, 0)
b, _ := ioutil.ReadAll(rs.indexF)
if len(b) != 9+int(rs.keysAdded)*rs.bytesPerRec {
panic(fmt.Errorf("expected: %d, got: %d; rs.keysAdded=%d, rs.bytesPerRec=%d, %s", 9+int(rs.keysAdded)*rs.bytesPerRec, len(b), rs.keysAdded, rs.bytesPerRec, rs.indexFile))
}
}
if rs.enums {
rs.offsetEf = eliasfano32.NewEliasFano(rs.keysAdded, rs.maxOffset, rs.minDelta)
defer rs.offsetCollector.Close()
if err := rs.offsetCollector.Load(nil, "", rs.loadFuncOffset, etl.TransformArgs{}); err != nil {
return err
}
rs.offsetEf.Build()
}
rs.gr.appendFixed(1, 1) // Sentinel (avoids checking for parts of size 1)
// Construct Elias Fano index
rs.ef.Build(rs.bucketSizeAcc, rs.bucketPosAcc)
rs.built = true
// Write out bucket count, bucketSize, leafSize
binary.BigEndian.PutUint64(rs.numBuf[:], rs.bucketCount)
if _, err := rs.indexW.Write(rs.numBuf[:8]); err != nil {
return fmt.Errorf("writing bucketCount: %w", err)
}
binary.BigEndian.PutUint16(rs.numBuf[:], uint16(rs.bucketSize))
if _, err := rs.indexW.Write(rs.numBuf[:2]); err != nil {
return fmt.Errorf("writing bucketSize: %w", err)
}
binary.BigEndian.PutUint16(rs.numBuf[:], rs.leafSize)
if _, err := rs.indexW.Write(rs.numBuf[:2]); err != nil {
return fmt.Errorf("writing leafSize: %w", err)
}
// Write out salt
binary.BigEndian.PutUint32(rs.numBuf[:], rs.salt)
if _, err := rs.indexW.Write(rs.numBuf[:4]); err != nil {
return fmt.Errorf("writing salt: %w", err)
}
// Write out start seeds
if err := rs.indexW.WriteByte(byte(len(rs.startSeed))); err != nil {
return fmt.Errorf("writing len of start seeds: %w", err)
}
for _, s := range rs.startSeed {
binary.BigEndian.PutUint64(rs.numBuf[:], s)
if _, err := rs.indexW.Write(rs.numBuf[:8]); err != nil {
return fmt.Errorf("writing start seed: %w", err)
}
}
if rs.enums {
if err := rs.indexW.WriteByte(1); err != nil {
return fmt.Errorf("writing enums = true: %w", err)
}
} else {
if err := rs.indexW.WriteByte(0); err != nil {
return fmt.Errorf("writing enums = true: %w", err)
}
}
if rs.enums {
// Write out elias fano for offsets
if err := rs.offsetEf.Write(rs.indexW); err != nil {
return fmt.Errorf("writing elias fano for offsets: %w", err)
}
}
// Write out the size of golomb rice params
binary.BigEndian.PutUint16(rs.numBuf[:], uint16(len(rs.golombRice)))
if _, err := rs.indexW.Write(rs.numBuf[:4]); err != nil {
return fmt.Errorf("writing golomb rice param size: %w", err)
}
// Write out golomb rice
if err := rs.gr.Write(rs.indexW); err != nil {
return fmt.Errorf("writing golomb rice: %w", err)
}
// Write out elias fano
if err := rs.ef.Write(rs.indexW); err != nil {
return fmt.Errorf("writing elias fano: %w", err)
}
if err := rs.indexW.Flush(); err != nil {
return err
}
return nil
}
// Stats returns the size of golomb rice encoding and ellias fano encoding
func (rs RecSplit) Stats() (int, int) {
return len(rs.gr.Data()), len(rs.ef.Data())
}
// Collision returns true if there was a collision detected during mapping of keys
// into 64-bit values
// RecSplit needs to be reset, re-populated with keys, and rebuilt
func (rs RecSplit) Collision() bool {
return rs.collision
}