erigon-pulse/core/vm/instructions.go
2021-08-24 08:28:58 +01:00

917 lines
29 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"fmt"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/core/types"
"github.com/ledgerwatch/erigon/params"
"github.com/ledgerwatch/log/v3"
)
func opAdd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Add(&x, y)
return nil, nil
}
func opSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Sub(&x, y)
return nil, nil
}
func opMul(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Mul(&x, y)
return nil, nil
}
func opDiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Div(&x, y)
return nil, nil
}
func opSdiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.SDiv(&x, y)
return nil, nil
}
func opMod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Mod(&x, y)
return nil, nil
}
func opSmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.SMod(&x, y)
return nil, nil
}
func opExp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
base, exponent := callContext.stack.Pop(), callContext.stack.Peek()
switch {
case exponent.IsZero():
// x ^ 0 == 1
exponent.SetOne()
case base.IsZero():
// 0 ^ y, if y != 0, == 0
exponent.Clear()
case exponent.LtUint64(2): // exponent == 1
// x ^ 1 == x
exponent.Set(&base)
case base.LtUint64(2): // base == 1
// 1 ^ y == 1
exponent.SetOne()
case base.LtUint64(3): // base == 2
if exponent.LtUint64(256) {
n := uint(exponent.Uint64())
exponent.SetOne()
exponent.Lsh(exponent, n)
} else {
exponent.Clear()
}
default:
exponent.Exp(&base, exponent)
}
return nil, nil
}
func opSignExtend(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
back, num := callContext.stack.Pop(), callContext.stack.Peek()
num.ExtendSign(num, &back)
return nil, nil
}
func opNot(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x := callContext.stack.Peek()
x.Not(x)
return nil, nil
}
func opLt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
if x.Lt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opGt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
if x.Gt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opSlt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
if x.Slt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opSgt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
if x.Sgt(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opEq(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
if x.Eq(y) {
y.SetOne()
} else {
y.Clear()
}
return nil, nil
}
func opIszero(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x := callContext.stack.Peek()
if x.IsZero() {
x.SetOne()
} else {
x.Clear()
}
return nil, nil
}
func opAnd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.And(&x, y)
return nil, nil
}
func opOr(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Or(&x, y)
return nil, nil
}
func opXor(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.Pop(), callContext.stack.Peek()
y.Xor(&x, y)
return nil, nil
}
func opByte(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
th, val := callContext.stack.Pop(), callContext.stack.Peek()
val.Byte(&th)
return nil, nil
}
func opAddmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y, z := callContext.stack.Pop(), callContext.stack.Pop(), callContext.stack.Peek()
if z.IsZero() {
z.Clear()
} else {
z.AddMod(&x, &y, z)
}
return nil, nil
}
func opMulmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y, z := callContext.stack.Pop(), callContext.stack.Pop(), callContext.stack.Peek()
if z.IsZero() {
z.Clear()
} else {
z.MulMod(&x, &y, z)
}
return nil, nil
}
// opSHL implements Shift Left
// The SHL instruction (shift left) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the left by arg1 number of bits.
func opSHL(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := callContext.stack.Pop(), callContext.stack.Peek()
if shift.LtUint64(256) {
value.Lsh(value, uint(shift.Uint64()))
} else {
value.Clear()
}
return nil, nil
}
// opSHR implements Logical Shift Right
// The SHR instruction (logical shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with zero fill.
func opSHR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := callContext.stack.Pop(), callContext.stack.Peek()
if shift.LtUint64(256) {
value.Rsh(value, uint(shift.Uint64()))
} else {
value.Clear()
}
return nil, nil
}
// opSAR implements Arithmetic Shift Right
// The SAR instruction (arithmetic shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with sign extension.
func opSAR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
shift, value := callContext.stack.Pop(), callContext.stack.Peek()
if shift.GtUint64(255) {
if value.Sign() >= 0 {
value.Clear()
} else {
// Max negative shift: all bits set
value.SetAllOne()
}
return nil, nil
}
n := uint(shift.Uint64())
value.SRsh(value, n)
return nil, nil
}
func opSha3(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.Pop(), callContext.stack.Peek()
data := callContext.memory.GetPtr(offset.Uint64(), size.Uint64())
if interpreter.hasher == nil {
interpreter.hasher = sha3.NewLegacyKeccak256().(keccakState)
} else {
interpreter.hasher.Reset()
}
interpreter.hasher.Write(data)
if _, err := interpreter.hasher.Read(interpreter.hasherBuf[:]); err != nil {
panic(err)
}
size.SetBytes(interpreter.hasherBuf[:])
return nil, nil
}
func opAddress(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetBytes(callContext.contract.Address().Bytes()))
return nil, nil
}
func opBalance(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.Peek()
address := common.Address(slot.Bytes20())
slot.Set(interpreter.evm.IntraBlockState.GetBalance(address))
return nil, nil
}
func opOrigin(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetBytes(interpreter.evm.Origin.Bytes()))
return nil, nil
}
func opCaller(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetBytes(callContext.contract.Caller().Bytes()))
return nil, nil
}
func opCallValue(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(callContext.contract.value)
return nil, nil
}
func opCallDataLoad(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x := callContext.stack.Peek()
if offset, overflow := x.Uint64WithOverflow(); !overflow {
data := getData(callContext.contract.Input, offset, 32)
x.SetBytes(data)
} else {
x.Clear()
}
return nil, nil
}
func opCallDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetUint64(uint64(len(callContext.contract.Input))))
return nil, nil
}
func opCallDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.Pop()
dataOffset = callContext.stack.Pop()
length = callContext.stack.Pop()
)
dataOffset64, overflow := dataOffset.Uint64WithOverflow()
if overflow {
dataOffset64 = 0xffffffffffffffff
}
// These values are checked for overflow during gas cost calculation
memOffset64 := memOffset.Uint64()
length64 := length.Uint64()
callContext.memory.Set(memOffset64, length64, getData(callContext.contract.Input, dataOffset64, length64))
return nil, nil
}
func opReturnDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetUint64(uint64(len(interpreter.returnData))))
return nil, nil
}
func opReturnDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.Pop()
dataOffset = callContext.stack.Pop()
length = callContext.stack.Pop()
)
offset64, overflow := dataOffset.Uint64WithOverflow()
if overflow {
return nil, ErrReturnDataOutOfBounds
}
// we can reuse dataOffset now (aliasing it for clarity)
end := dataOffset
_, overflow = end.AddOverflow(&dataOffset, &length)
if overflow {
return nil, ErrReturnDataOutOfBounds
}
end64, overflow := end.Uint64WithOverflow()
if overflow || uint64(len(interpreter.returnData)) < end64 {
return nil, ErrReturnDataOutOfBounds
}
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), interpreter.returnData[offset64:end64])
return nil, nil
}
func opExtCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.Peek()
slot.SetUint64(uint64(interpreter.evm.IntraBlockState.GetCodeSize(common.Address(slot.Bytes20()))))
return nil, nil
}
func opCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
l := new(uint256.Int)
l.SetUint64(uint64(len(callContext.contract.Code)))
callContext.stack.Push(l)
return nil, nil
}
func opCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.Pop()
codeOffset = callContext.stack.Pop()
length = callContext.stack.Pop()
)
uint64CodeOffset, overflow := codeOffset.Uint64WithOverflow()
if overflow {
uint64CodeOffset = 0xffffffffffffffff
}
codeCopy := getData(callContext.contract.Code, uint64CodeOffset, length.Uint64())
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy)
return nil, nil
}
func opExtCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
stack = callContext.stack
a = stack.Pop()
memOffset = stack.Pop()
codeOffset = stack.Pop()
length = stack.Pop()
)
addr := common.Address(a.Bytes20())
len64 := length.Uint64()
codeCopy := getDataBig(interpreter.evm.IntraBlockState.GetCode(addr), &codeOffset, len64)
callContext.memory.Set(memOffset.Uint64(), len64, codeCopy)
return nil, nil
}
// opExtCodeHash returns the code hash of a specified account.
// There are several cases when the function is called, while we can relay everything
// to `state.GetCodeHash` function to ensure the correctness.
// (1) Caller tries to get the code hash of a normal contract account, state
// should return the relative code hash and set it as the result.
//
// (2) Caller tries to get the code hash of a non-existent account, state should
// return common.Hash{} and zero will be set as the result.
//
// (3) Caller tries to get the code hash for an account without contract code,
// state should return emptyCodeHash(0xc5d246...) as the result.
//
// (4) Caller tries to get the code hash of a precompiled account, the result
// should be zero or emptyCodeHash.
//
// It is worth noting that in order to avoid unnecessary create and clean,
// all precompile accounts on mainnet have been transferred 1 wei, so the return
// here should be emptyCodeHash.
// If the precompile account is not transferred any amount on a private or
// customized chain, the return value will be zero.
//
// (5) Caller tries to get the code hash for an account which is marked as suicided
// in the current transaction, the code hash of this account should be returned.
//
// (6) Caller tries to get the code hash for an account which is marked as deleted,
// this account should be regarded as a non-existent account and zero should be returned.
func opExtCodeHash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.Peek()
address := common.Address(slot.Bytes20())
if interpreter.evm.IntraBlockState.Empty(address) {
slot.Clear()
} else {
slot.SetBytes(interpreter.evm.IntraBlockState.GetCodeHash(address).Bytes())
}
return nil, nil
}
func opGasprice(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v, overflow := uint256.FromBig(interpreter.evm.GasPrice)
if overflow {
return nil, fmt.Errorf("interpreter.evm.GasPrice higher than 2^256-1")
}
callContext.stack.Push(v)
return nil, nil
}
func opBlockhash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
num := callContext.stack.Peek()
num64, overflow := num.Uint64WithOverflow()
if overflow {
num.Clear()
return nil, nil
}
var upper, lower uint64
upper = interpreter.evm.Context.BlockNumber
if upper < 257 {
lower = 0
} else {
lower = upper - 256
}
if num64 >= lower && num64 < upper {
num.SetBytes(interpreter.evm.Context.GetHash(num64).Bytes())
} else {
num.Clear()
}
return nil, nil
}
func opCoinbase(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetBytes(interpreter.evm.Context.Coinbase.Bytes()))
return nil, nil
}
func opTimestamp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v := new(uint256.Int).SetUint64(interpreter.evm.Context.Time)
callContext.stack.Push(v)
return nil, nil
}
func opNumber(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v := new(uint256.Int).SetUint64(interpreter.evm.Context.BlockNumber)
callContext.stack.Push(v)
return nil, nil
}
func opDifficulty(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v, overflow := uint256.FromBig(interpreter.evm.Context.Difficulty)
if overflow {
return nil, fmt.Errorf("interpreter.evm.Context.Difficulty higher than 2^256-1")
}
callContext.stack.Push(v)
return nil, nil
}
func opGasLimit(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
if interpreter.evm.Context.MaxGasLimit {
callContext.stack.Push(new(uint256.Int).SetAllOne())
} else {
callContext.stack.Push(new(uint256.Int).SetUint64(interpreter.evm.Context.GasLimit))
}
return nil, nil
}
func opPop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Pop()
return nil, nil
}
func opMload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v := callContext.stack.Peek()
offset := v.Uint64()
v.SetBytes(callContext.memory.GetPtr(offset, 32))
return nil, nil
}
func opMstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
mStart, val := callContext.stack.Pop(), callContext.stack.Pop()
callContext.memory.Set32(mStart.Uint64(), &val)
return nil, nil
}
func opMstore8(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
off, val := callContext.stack.Pop(), callContext.stack.Pop()
callContext.memory.store[off.Uint64()] = byte(val.Uint64())
return nil, nil
}
func opSload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
loc := callContext.stack.Peek()
interpreter.hasherBuf = loc.Bytes32()
interpreter.evm.IntraBlockState.GetState(callContext.contract.Address(), &interpreter.hasherBuf, loc)
return nil, nil
}
func opSstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
loc := callContext.stack.Pop()
val := callContext.stack.Pop()
interpreter.hasherBuf = loc.Bytes32()
interpreter.evm.IntraBlockState.SetState(callContext.contract.Address(), &interpreter.hasherBuf, val)
return nil, nil
}
func opJump(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
pos := callContext.stack.Pop()
if valid, usedBitmap := callContext.contract.validJumpdest(&pos); !valid {
if usedBitmap && interpreter.cfg.TraceJumpDest {
log.Warn("Code Bitmap used for detecting invalid jump",
"tx", fmt.Sprintf("0x%x", interpreter.evm.TxContext.TxHash),
"block number", interpreter.evm.Context.BlockNumber,
)
}
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
return nil, nil
}
func opJumpi(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
pos, cond := callContext.stack.Pop(), callContext.stack.Pop()
if !cond.IsZero() {
if valid, usedBitmap := callContext.contract.validJumpdest(&pos); !valid {
if usedBitmap && interpreter.cfg.TraceJumpDest {
log.Warn("Code Bitmap used for detecting invalid jump",
"tx", fmt.Sprintf("0x%x", interpreter.evm.TxContext.TxHash),
"block number", interpreter.evm.Context.BlockNumber,
)
}
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
} else {
*pc++
}
return nil, nil
}
func opJumpdest(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
return nil, nil
}
func opPc(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetUint64(*pc))
return nil, nil
}
func opMsize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetUint64(uint64(callContext.memory.Len())))
return nil, nil
}
func opGas(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Push(new(uint256.Int).SetUint64(callContext.contract.Gas))
return nil, nil
}
func opCreate(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
value = callContext.stack.Pop()
offset = callContext.stack.Pop()
size = callContext.stack.Peek()
input = callContext.memory.GetCopy(offset.Uint64(), size.Uint64())
gas = callContext.contract.Gas
)
if interpreter.evm.ChainRules.IsEIP150 {
gas -= gas / 64
}
// reuse size int for stackvalue
stackvalue := size
callContext.contract.UseGas(gas)
res, addr, returnGas, suberr := interpreter.evm.Create(callContext.contract, input, gas, &value)
// Push item on the stack based on the returned error. If the ruleset is
// homestead we must check for CodeStoreOutOfGasError (homestead only
// rule) and treat as an error, if the ruleset is frontier we must
// ignore this error and pretend the operation was successful.
if interpreter.evm.ChainRules.IsHomestead && suberr == ErrCodeStoreOutOfGas {
stackvalue.Clear()
} else if suberr != nil && suberr != ErrCodeStoreOutOfGas {
stackvalue.Clear()
} else {
stackvalue.SetBytes(addr.Bytes())
}
callContext.contract.Gas += returnGas
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCreate2(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
endowment = callContext.stack.Pop()
offset, size = callContext.stack.Pop(), callContext.stack.Pop()
salt = callContext.stack.Pop()
input = callContext.memory.GetCopy(offset.Uint64(), size.Uint64())
gas = callContext.contract.Gas
)
// Apply EIP150
gas -= gas / 64
callContext.contract.UseGas(gas)
// reuse size int for stackvalue
stackValue := size
res, addr, returnGas, suberr := interpreter.evm.Create2(callContext.contract, input, gas, &endowment, &salt)
// Push item on the stack based on the returned error.
if suberr != nil {
stackValue.Clear()
} else {
stackValue.SetBytes(addr.Bytes())
}
callContext.stack.Push(&stackValue)
callContext.contract.Gas += returnGas
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
stack := callContext.stack
// Pop gas. The actual gas in interpreter.evm.callGasTemp.
// We can use this as a temporary value
temp := stack.Pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop()
toAddr := common.Address(addr.Bytes20())
// Get the arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Uint64(), inSize.Uint64())
if !value.IsZero() {
gas += params.CallStipend
}
ret, returnGas, err := interpreter.evm.Call(callContext.contract, toAddr, args, gas, &value, false /* bailout */)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.Push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
return ret, nil
}
func opCallCode(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
stack := callContext.stack
// We use it as a temporary value
temp := stack.Pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Uint64(), inSize.Uint64())
//TODO: use uint256.Int instead of converting with toBig()
if !value.IsZero() {
gas += params.CallStipend
}
ret, returnGas, err := interpreter.evm.CallCode(callContext.contract, toAddr, args, gas, &value)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.Push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
return ret, nil
}
func opDelegateCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
stack := callContext.stack
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
// We use it as a temporary value
temp := stack.Pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Uint64(), inSize.Uint64())
ret, returnGas, err := interpreter.evm.DelegateCall(callContext.contract, toAddr, args, gas)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.Push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
return ret, nil
}
func opStaticCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
stack := callContext.stack
// We use it as a temporary value
temp := stack.Pop()
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop(), stack.Pop()
toAddr := common.Address(addr.Bytes20())
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Uint64(), inSize.Uint64())
ret, returnGas, err := interpreter.evm.StaticCall(callContext.contract, toAddr, args, gas)
if err != nil {
temp.Clear()
} else {
temp.SetOne()
}
stack.Push(&temp)
if err == nil || err == ErrExecutionReverted {
ret = common.CopyBytes(ret)
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
return ret, nil
}
func opReturn(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.Pop(), callContext.stack.Pop()
ret := callContext.memory.GetPtr(offset.Uint64(), size.Uint64())
return ret, nil
}
func opRevert(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.Pop(), callContext.stack.Pop()
ret := callContext.memory.GetPtr(offset.Uint64(), size.Uint64())
return ret, nil
}
func opStop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
return nil, nil
}
func opSuicide(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
beneficiary := callContext.stack.Pop()
callerAddr := callContext.contract.Address()
beneficiaryAddr := common.Address(beneficiary.Bytes20())
balance := interpreter.evm.IntraBlockState.GetBalance(callerAddr)
interpreter.evm.IntraBlockState.AddBalance(beneficiaryAddr, balance)
if interpreter.evm.Config.Debug {
interpreter.evm.Config.Tracer.CaptureSelfDestruct(callerAddr, beneficiaryAddr, balance.ToBig())
}
interpreter.evm.IntraBlockState.Suicide(callerAddr)
return nil, nil
}
// following functions are used by the instruction jump table
// make log instruction function
func makeLog(size int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
topics := make([]common.Hash, size)
stack := callContext.stack
mStart, mSize := stack.Pop(), stack.Pop()
for i := 0; i < size; i++ {
addr := stack.Pop()
topics[i] = common.Hash(addr.Bytes32())
}
d := callContext.memory.GetCopy(mStart.Uint64(), mSize.Uint64())
interpreter.evm.IntraBlockState.AddLog(&types.Log{
Address: callContext.contract.Address(),
Topics: topics,
Data: d,
// This is a non-consensus field, but assigned here because
// core/state doesn't know the current block number.
BlockNumber: interpreter.evm.Context.BlockNumber,
})
return nil, nil
}
}
// opPush1 is a specialized version of pushN
func opPush1(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
codeLen = uint64(len(callContext.contract.Code))
integer = new(uint256.Int)
)
*pc++
if *pc < codeLen {
callContext.stack.Push(integer.SetUint64(uint64(callContext.contract.Code[*pc])))
} else {
callContext.stack.Push(integer.Clear())
}
return nil, nil
}
// make push instruction function
func makePush(size uint64, pushByteSize int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
codeLen := len(callContext.contract.Code)
startMin := int(*pc + 1)
if startMin >= codeLen {
startMin = codeLen
}
endMin := startMin + pushByteSize
if startMin+pushByteSize >= codeLen {
endMin = codeLen
}
integer := new(uint256.Int)
callContext.stack.Push(integer.SetBytes(common.RightPadBytes(
// So it doesn't matter what we push onto the stack.
callContext.contract.Code[startMin:endMin], pushByteSize)))
*pc += size
return nil, nil
}
}
// make dup instruction function
func makeDup(size int64) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Dup(int(size))
return nil, nil
}
}
// make swap instruction function
func makeSwap(size int64) executionFunc {
// switch n + 1 otherwise n would be swapped with n
size++
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.Swap(int(size))
return nil, nil
}
}