mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-07 11:32:20 +00:00
637 lines
21 KiB
Go
637 lines
21 KiB
Go
/*
|
|
Copyright 2021 Erigon contributors
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package txpool
|
|
|
|
import (
|
|
"container/heap"
|
|
"context"
|
|
"fmt"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/google/btree"
|
|
"github.com/holiman/uint256"
|
|
"github.com/ledgerwatch/log/v3"
|
|
"go.uber.org/atomic"
|
|
)
|
|
|
|
// Pool is interface for the transaction pool
|
|
// This interface exists for the convinience of testing, and not yet because
|
|
// there are multiple implementations
|
|
type Pool interface {
|
|
// IdHashKnown check whether transaction with given Id hash is known to the pool
|
|
IdHashKnown(hash []byte) bool
|
|
GetRlp(hash []byte) []byte
|
|
|
|
NotifyNewPeer(peerID PeerID)
|
|
}
|
|
|
|
// SubPoolMarker ordered bitset responsible to sort transactions by sub-pools. Bits meaning:
|
|
// 1. Minimum fee requirement. Set to 1 if feeCap of the transaction is no less than in-protocol parameter of minimal base fee. Set to 0 if feeCap is less than minimum base fee, which means this transaction will never be included into this particular chain.
|
|
// 2. Absence of nonce gaps. Set to 1 for transactions whose nonce is N, state nonce for the sender is M, and there are transactions for all nonces between M and N from the same sender. Set to 0 is the transaction's nonce is divided from the state nonce by one or more nonce gaps.
|
|
// 3. Sufficient balance for gas. Set to 1 if the balance of sender's account in the state is B, nonce of the sender in the state is M, nonce of the transaction is N, and the sum of feeCap x gasLimit + transferred_value of all transactions from this sender with nonces N+1 ... M is no more than B. Set to 0 otherwise. In other words, this bit is set if there is currently a guarantee that the transaction and all its required prior transactions will be able to pay for gas.
|
|
// 4. Dynamic fee requirement. Set to 1 if feeCap of the transaction is no less than baseFee of the currently pending block. Set to 0 otherwise.
|
|
// 5. Local transaction. Set to 1 if transaction is local.
|
|
type SubPoolMarker uint8
|
|
|
|
const (
|
|
EnoughFeeCapProtocol = 0b10000
|
|
NoNonceGaps = 0b01000
|
|
EnoughBalance = 0b00100
|
|
EnoughFeeCapBlock = 0b00010
|
|
IsLocal = 0b00001
|
|
)
|
|
|
|
// MetaTx holds transaction and some metadata
|
|
type MetaTx struct {
|
|
SubPool SubPoolMarker // Aggregated field
|
|
NeedBalance uint256.Int // Aggregated field; gasLimit x feeCap + transferred_value
|
|
SenderHasEnoughBalance bool // Aggregated field; gasLimit x feeCap + transferred_value
|
|
Tx *TxSlot
|
|
bestIndex int
|
|
worstIndex int
|
|
currentSubPool SubPoolType
|
|
}
|
|
|
|
func newMetaTx(slot *TxSlot) *MetaTx {
|
|
return &MetaTx{Tx: slot, worstIndex: -1, bestIndex: -1}
|
|
}
|
|
|
|
type SubPoolType uint8
|
|
|
|
const PendingSubPool SubPoolType = 1
|
|
const BaseFeeSubPool SubPoolType = 2
|
|
const QueuedSubPool SubPoolType = 3
|
|
|
|
const PendingSubPoolLimit = 1024
|
|
const BaseFeeSubPoolLimit = 1024
|
|
const QueuedSubPoolLimit = 1024
|
|
|
|
type Nonce2Tx struct{ *btree.BTree }
|
|
|
|
type SenderInfo struct {
|
|
balance uint256.Int
|
|
nonce uint64
|
|
txNonce2Tx *Nonce2Tx // sorted map of nonce => *MetaTx
|
|
}
|
|
|
|
type nonce2TxItem struct{ *MetaTx }
|
|
|
|
func (i *nonce2TxItem) Less(than btree.Item) bool {
|
|
return i.MetaTx.Tx.nonce < than.(*nonce2TxItem).MetaTx.Tx.nonce
|
|
}
|
|
|
|
// TxPool - holds all pool-related data structures and lock-based tiny methods
|
|
// most of logic implemented by pure tests-friendly functions
|
|
type TxPool struct {
|
|
lock *sync.RWMutex
|
|
logger log.Logger //nolint
|
|
|
|
protocolBaseFee atomic.Uint64
|
|
blockBaseFee atomic.Uint64
|
|
|
|
senderInfo map[uint64]SenderInfo
|
|
byHash map[string]*MetaTx // tx_hash => tx
|
|
pending, baseFee, queued *SubPool
|
|
|
|
// fields for transaction propagation
|
|
recentlyConnectedPeers *recentlyConnectedPeers
|
|
//lastTxPropagationTimestamp time.Time
|
|
}
|
|
|
|
func (p *TxPool) GetRlp(hash []byte) []byte {
|
|
p.lock.RLock()
|
|
defer p.lock.RUnlock()
|
|
|
|
txn, ok := p.byHash[string(hash)]
|
|
if !ok {
|
|
return nil
|
|
}
|
|
return txn.Tx.rlp
|
|
}
|
|
func (p *TxPool) AppendLocalHashes(buf []byte) {
|
|
p.lock.RLock()
|
|
defer p.lock.RUnlock()
|
|
i := 0
|
|
for hash, txn := range p.byHash {
|
|
if txn.SubPool&IsLocal == 0 {
|
|
continue
|
|
}
|
|
copy(buf[i*32:(i+1)*32], hash)
|
|
i++
|
|
}
|
|
}
|
|
func (p *TxPool) AppendRemoteHashes(buf []byte) {
|
|
p.lock.RLock()
|
|
defer p.lock.RUnlock()
|
|
|
|
i := 0
|
|
for hash, txn := range p.byHash {
|
|
if txn.SubPool&IsLocal != 0 {
|
|
continue
|
|
}
|
|
copy(buf[i*32:(i+1)*32], hash)
|
|
i++
|
|
}
|
|
}
|
|
func (p *TxPool) IdHashKnown(hash []byte) bool {
|
|
p.lock.RLock()
|
|
defer p.lock.RUnlock()
|
|
|
|
_, ok := p.byHash[string(hash)]
|
|
return ok
|
|
}
|
|
func (p *TxPool) OnNewPeer(peerID PeerID) { p.recentlyConnectedPeers.AddPeer(peerID) }
|
|
func (p *TxPool) OnNewBlock(unwindTxs, minedTxs []*TxSlot, protocolBaseFee, blockBaseFee uint64) {
|
|
p.lock.Lock()
|
|
defer p.lock.Unlock()
|
|
p.protocolBaseFee.Store(protocolBaseFee)
|
|
p.blockBaseFee.Store(blockBaseFee)
|
|
|
|
onNewBlock(p.senderInfo, unwindTxs, minedTxs, protocolBaseFee, blockBaseFee, p.pending, p.baseFee, p.queued, p.byHash)
|
|
}
|
|
|
|
func onNewBlock(senderInfo map[uint64]SenderInfo, unwindTxs, minedTxs []*TxSlot, protocolBaseFee, blockBaseFee uint64, pending, baseFee, queued *SubPool, byHash map[string]*MetaTx) {
|
|
if unwindTxs != nil {
|
|
unwind(senderInfo, unwindTxs, pending, func(i *MetaTx) {
|
|
delete(byHash, string(i.Tx.idHash[:]))
|
|
})
|
|
}
|
|
forward(senderInfo, minedTxs, protocolBaseFee, blockBaseFee, pending, baseFee, queued, func(i *MetaTx) {
|
|
delete(byHash, string(i.Tx.idHash[:]))
|
|
senderInfo[i.Tx.senderID].txNonce2Tx.Delete(&nonce2TxItem{i})
|
|
})
|
|
}
|
|
|
|
// forward - apply new highest block (or batch of blocks)
|
|
//
|
|
// 1. New best block arrives, which potentially changes the balance and the nonce of some senders.
|
|
// We use senderIds data structure to find relevant senderId values, and then use senders data structure to
|
|
// modify state_balance and state_nonce, potentially remove some elements (if transaction with some nonce is
|
|
// included into a block), and finally, walk over the transaction records and update SubPool fields depending on
|
|
// the actual presence of nonce gaps and what the balance is.
|
|
func forward(senderInfo map[uint64]SenderInfo, minedTxs []*TxSlot, protocolBaseFee, blockBaseFee uint64, pending, baseFee, queued *SubPool, discard func(tx *MetaTx)) {
|
|
// TODO: change sender.nonce
|
|
|
|
for _, tx := range minedTxs {
|
|
sender, ok := senderInfo[tx.senderID]
|
|
if !ok {
|
|
panic("not implemented yet")
|
|
}
|
|
// delete mined transactions from everywhere
|
|
sender.txNonce2Tx.Ascend(func(i btree.Item) bool {
|
|
it := i.(*nonce2TxItem)
|
|
if it.MetaTx.Tx.nonce > sender.nonce {
|
|
return false
|
|
}
|
|
// TODO: save local transactions to cache with TTL, in case of re-org - to restore isLocal flag of re-injected transactions
|
|
|
|
// del from nonce2tx mapping
|
|
sender.txNonce2Tx.Delete(i)
|
|
// del from sub-pool
|
|
switch it.MetaTx.currentSubPool {
|
|
case PendingSubPool:
|
|
pending.UnsafeRemove(it.MetaTx)
|
|
discard(it.MetaTx)
|
|
case BaseFeeSubPool:
|
|
baseFee.UnsafeRemove(it.MetaTx)
|
|
discard(it.MetaTx)
|
|
case QueuedSubPool:
|
|
queued.UnsafeRemove(it.MetaTx)
|
|
discard(it.MetaTx)
|
|
default:
|
|
//already removed
|
|
}
|
|
return true
|
|
})
|
|
|
|
// TODO: aggregate changed senders before call this func
|
|
onSenderChange(sender, protocolBaseFee, blockBaseFee)
|
|
}
|
|
|
|
pending.EnforceInvariants()
|
|
baseFee.EnforceInvariants()
|
|
queued.EnforceInvariants()
|
|
|
|
promote(pending, baseFee, queued, discard)
|
|
}
|
|
|
|
// unwind
|
|
// This can be thought of a reverse operation from the one described before.
|
|
// When a block that was deemed "the best" of its height, is no longer deemed "the best", the
|
|
// transactions contained in it, are now viable for inclusion in other blocks, and therefore should
|
|
// be returned into the transaction pool.
|
|
// An interesting note here is that if the block contained any transactions local to the node,
|
|
// by being first removed from the pool (from the "local" part of it), and then re-injected,
|
|
// they effective lose their priority over the "remote" transactions. In order to prevent that,
|
|
// somehow the fact that certain transactions were local, needs to be remembered for some
|
|
// time (up to some "immutability threshold").
|
|
func unwind(senderInfo map[uint64]SenderInfo, unwindTxs []*TxSlot, pending *SubPool, onAdd func(tx *MetaTx)) {
|
|
// TODO: change sender.nonce
|
|
|
|
for _, tx := range unwindTxs {
|
|
sender, ok := senderInfo[tx.senderID]
|
|
if !ok {
|
|
panic("not implemented yet")
|
|
}
|
|
|
|
//TODO: restore isLocal flag
|
|
mt := newMetaTx(tx)
|
|
// Insert to pending pool, if pool doesn't have tx with same Nonce and bigger Tip
|
|
if found := sender.txNonce2Tx.Get(&nonce2TxItem{mt}); found != nil {
|
|
if tx.tip <= found.(*nonce2TxItem).MetaTx.Tx.tip {
|
|
continue
|
|
}
|
|
}
|
|
sender.txNonce2Tx.ReplaceOrInsert(&nonce2TxItem{mt})
|
|
onAdd(mt)
|
|
pending.UnsafeAdd(mt, PendingSubPool)
|
|
}
|
|
pending.EnforceInvariants()
|
|
}
|
|
|
|
func onSenderChange(sender SenderInfo, protocolBaseFee, blockBaseFee uint64) {
|
|
prevNonce := -1
|
|
accumulatedSenderSpent := uint256.NewInt(0)
|
|
sender.txNonce2Tx.Ascend(func(i btree.Item) bool {
|
|
it := i.(*nonce2TxItem)
|
|
|
|
// Sender has enough balance for: gasLimit x feeCap + transferred_value
|
|
needBalance := (&it.MetaTx.NeedBalance).SetUint64(0)
|
|
needBalance.Mul(uint256.NewInt(it.MetaTx.Tx.gas), uint256.NewInt(it.MetaTx.Tx.feeCap))
|
|
needBalance.Add(&it.MetaTx.NeedBalance, &it.MetaTx.Tx.value)
|
|
it.MetaTx.SenderHasEnoughBalance = sender.balance.Gt(needBalance) || sender.balance.Eq(needBalance)
|
|
|
|
// 1. Minimum fee requirement. Set to 1 if feeCap of the transaction is no less than in-protocol
|
|
// parameter of minimal base fee. Set to 0 if feeCap is less than minimum base fee, which means
|
|
// this transaction will never be included into this particular chain.
|
|
it.MetaTx.SubPool &^= EnoughFeeCapProtocol
|
|
if it.MetaTx.Tx.feeCap >= protocolBaseFee {
|
|
it.MetaTx.SubPool &= EnoughFeeCapProtocol
|
|
}
|
|
|
|
// 2. Absence of nonce gaps. Set to 1 for transactions whose nonce is N, state nonce for
|
|
// the sender is M, and there are transactions for all nonces between M and N from the same
|
|
// sender. Set to 0 is the transaction's nonce is divided from the state nonce by one or more nonce gaps.
|
|
it.MetaTx.SubPool &^= NoNonceGaps
|
|
if prevNonce == -1 || uint64(prevNonce)+1 == it.MetaTx.Tx.nonce {
|
|
it.MetaTx.SubPool &= NoNonceGaps
|
|
}
|
|
prevNonce = int(it.Tx.nonce)
|
|
|
|
// 3. Sufficient balance for gas. Set to 1 if the balance of sender's account in the
|
|
// state is B, nonce of the sender in the state is M, nonce of the transaction is N, and the
|
|
// sum of feeCap x gasLimit + transferred_value of all transactions from this sender with
|
|
// nonces N+1 ... M is no more than B. Set to 0 otherwise. In other words, this bit is
|
|
// set if there is currently a guarantee that the transaction and all its required prior
|
|
// transactions will be able to pay for gas.
|
|
it.MetaTx.SubPool &^= EnoughBalance
|
|
if sender.balance.Gt(accumulatedSenderSpent) || sender.balance.Eq(accumulatedSenderSpent) {
|
|
it.MetaTx.SubPool &= EnoughBalance
|
|
}
|
|
accumulatedSenderSpent.Add(accumulatedSenderSpent, needBalance) // already deleted all transactions with nonce <= sender.nonce
|
|
|
|
// 4. Dynamic fee requirement. Set to 1 if feeCap of the transaction is no less than
|
|
// baseFee of the currently pending block. Set to 0 otherwise.
|
|
it.MetaTx.SubPool &^= EnoughFeeCapBlock
|
|
if it.MetaTx.Tx.feeCap >= blockBaseFee {
|
|
it.MetaTx.SubPool &= EnoughFeeCapBlock
|
|
}
|
|
|
|
// 5. Local transaction. Set to 1 if transaction is local.
|
|
// can't change
|
|
|
|
return true
|
|
})
|
|
}
|
|
|
|
func promote(pending, baseFee, queued *SubPool, discard func(tx *MetaTx)) {
|
|
//1. If top element in the worst green queue has SubPool != 0b1111 (binary), it needs to be removed from the green pool.
|
|
// If SubPool < 0b1000 (not satisfying minimum fee), discard.
|
|
// If SubPool == 0b1110, demote to the yellow pool, otherwise demote to the red pool.
|
|
for worst := pending.Worst(); pending.Len() > 0; worst = pending.Worst() {
|
|
if worst.SubPool >= 0b11110 {
|
|
break
|
|
}
|
|
if worst.SubPool >= 0b11100 {
|
|
baseFee.Add(pending.PopWorst(), BaseFeeSubPool)
|
|
continue
|
|
}
|
|
if worst.SubPool >= 0b10000 {
|
|
queued.Add(pending.PopWorst(), QueuedSubPool)
|
|
continue
|
|
}
|
|
discard(pending.PopWorst())
|
|
}
|
|
|
|
//2. If top element in the worst green queue has SubPool == 0b1111, but there is not enough room in the pool, discard.
|
|
for worst := pending.Worst(); pending.Len() > PendingSubPoolLimit; worst = pending.Worst() {
|
|
if worst.SubPool >= 0b11111 { // TODO: here must 'SubPool == 0b1111' or 'SubPool <= 0b1111' ?
|
|
break
|
|
}
|
|
pending.PopWorst()
|
|
}
|
|
|
|
//3. If the top element in the best yellow queue has SubPool == 0b1111, promote to the green pool.
|
|
for best := baseFee.Best(); baseFee.Len() > 0; best = baseFee.Best() {
|
|
if best.SubPool < 0b11110 {
|
|
break
|
|
}
|
|
pending.Add(baseFee.PopBest(), PendingSubPool)
|
|
}
|
|
|
|
//4. If the top element in the worst yellow queue has SubPool != 0x1110, it needs to be removed from the yellow pool.
|
|
// If SubPool < 0b1000 (not satisfying minimum fee), discard. Otherwise, demote to the red pool.
|
|
for worst := baseFee.Worst(); baseFee.Len() > 0; worst = baseFee.Worst() {
|
|
if worst.SubPool >= 0b11100 {
|
|
break
|
|
}
|
|
if worst.SubPool >= 0b10000 {
|
|
queued.Add(baseFee.PopWorst(), QueuedSubPool)
|
|
continue
|
|
}
|
|
discard(baseFee.PopWorst())
|
|
}
|
|
|
|
//5. If the top element in the worst yellow queue has SubPool == 0x1110, but there is not enough room in the pool, discard.
|
|
for worst := baseFee.Worst(); baseFee.Len() > BaseFeeSubPoolLimit; worst = baseFee.Worst() {
|
|
if worst.SubPool >= 0b11110 {
|
|
break
|
|
}
|
|
discard(baseFee.PopWorst())
|
|
}
|
|
|
|
//6. If the top element in the best red queue has SubPool == 0x1110, promote to the yellow pool. If SubPool == 0x1111, promote to the green pool.
|
|
for best := queued.Best(); queued.Len() > 0; best = queued.Best() {
|
|
if best.SubPool < 0b11100 {
|
|
break
|
|
}
|
|
if best.SubPool < 0b11110 {
|
|
baseFee.Add(queued.PopBest(), BaseFeeSubPool)
|
|
continue
|
|
}
|
|
|
|
pending.Add(queued.PopBest(), PendingSubPool)
|
|
}
|
|
|
|
//7. If the top element in the worst red queue has SubPool < 0b1000 (not satisfying minimum fee), discard.
|
|
for worst := queued.Worst(); queued.Len() > 0; worst = queued.Worst() {
|
|
if worst.SubPool >= 0b10000 {
|
|
break
|
|
}
|
|
|
|
discard(queued.PopWorst())
|
|
}
|
|
|
|
//8. If the top element in the worst red queue has SubPool >= 0b100, but there is not enough room in the pool, discard.
|
|
for _ = queued.Worst(); queued.Len() > QueuedSubPoolLimit; _ = queued.Worst() {
|
|
discard(queued.PopWorst())
|
|
}
|
|
}
|
|
|
|
type SubPool struct {
|
|
best *BestQueue
|
|
worst *WorstQueue
|
|
}
|
|
|
|
func NewSubPool() *SubPool {
|
|
return &SubPool{best: &BestQueue{}, worst: &WorstQueue{}}
|
|
}
|
|
|
|
func (p *SubPool) EnforceInvariants() {
|
|
heap.Init(p.worst)
|
|
heap.Init(p.best)
|
|
}
|
|
func (p *SubPool) Best() *MetaTx {
|
|
if len(*p.best) == 0 {
|
|
return nil
|
|
}
|
|
return (*p.best)[0]
|
|
}
|
|
func (p *SubPool) Worst() *MetaTx {
|
|
if len(*p.worst) == 0 {
|
|
return nil
|
|
}
|
|
return (*p.worst)[0]
|
|
}
|
|
func (p *SubPool) PopBest() *MetaTx {
|
|
i := heap.Pop(p.best).(*MetaTx)
|
|
heap.Remove(p.worst, i.worstIndex)
|
|
return i
|
|
}
|
|
func (p *SubPool) PopWorst() *MetaTx {
|
|
i := heap.Pop(p.worst).(*MetaTx)
|
|
heap.Remove(p.best, i.bestIndex)
|
|
return i
|
|
}
|
|
func (p *SubPool) Len() int { return p.best.Len() }
|
|
func (p *SubPool) Add(i *MetaTx, subPoolType SubPoolType) {
|
|
i.currentSubPool = subPoolType
|
|
heap.Push(p.best, i)
|
|
heap.Push(p.worst, i)
|
|
}
|
|
|
|
// UnsafeRemove - does break Heap invariants, but it has O(1) instead of O(log(n)) complexity.
|
|
// Must manually call heap.Init after such changes.
|
|
// Make sense to batch unsafe changes
|
|
func (p *SubPool) UnsafeRemove(i *MetaTx) *MetaTx {
|
|
// manually call funcs instead of heap.Pop
|
|
p.worst.Swap(i.worstIndex, p.worst.Len()-1)
|
|
p.worst.Pop()
|
|
p.best.Swap(i.bestIndex, p.best.Len()-1)
|
|
p.best.Pop()
|
|
return i
|
|
}
|
|
func (p *SubPool) UnsafeAdd(i *MetaTx, subPoolType SubPoolType) {
|
|
i.currentSubPool = subPoolType
|
|
p.worst.Push(i)
|
|
p.best.Push(i)
|
|
}
|
|
func (p *SubPool) DebugPrint() {
|
|
for i, it := range *p.best {
|
|
fmt.Printf("best: %d, %d, %d\n", i, it.SubPool, it.bestIndex)
|
|
}
|
|
for i, it := range *p.worst {
|
|
fmt.Printf("worst: %d, %d, %d\n", i, it.SubPool, it.worstIndex)
|
|
}
|
|
}
|
|
|
|
type BestQueue []*MetaTx
|
|
|
|
func (mt *MetaTx) Less(than *MetaTx) bool {
|
|
if mt.SubPool != than.SubPool {
|
|
return mt.SubPool < than.SubPool
|
|
}
|
|
// means that strict nonce ordering of transactions from the same sender must be observed.
|
|
if mt.Tx.senderID != than.Tx.senderID {
|
|
return mt.Tx.senderID < than.Tx.senderID
|
|
}
|
|
if mt.Tx.nonce != than.Tx.nonce {
|
|
return mt.Tx.nonce < than.Tx.nonce
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (p BestQueue) Len() int { return len(p) }
|
|
func (p BestQueue) Less(i, j int) bool { return !p[i].Less(p[j]) } // We want Pop to give us the highest, not lowest, priority so we use !less here.
|
|
func (p BestQueue) Swap(i, j int) {
|
|
p[i], p[j] = p[j], p[i]
|
|
p[i].bestIndex = i
|
|
p[j].bestIndex = j
|
|
}
|
|
func (p *BestQueue) Push(x interface{}) {
|
|
n := len(*p)
|
|
item := x.(*MetaTx)
|
|
item.bestIndex = n
|
|
*p = append(*p, item)
|
|
}
|
|
|
|
func (p *BestQueue) Pop() interface{} {
|
|
old := *p
|
|
n := len(old)
|
|
item := old[n-1]
|
|
old[n-1] = nil // avoid memory leak
|
|
item.bestIndex = -1 // for safety
|
|
item.currentSubPool = 0 // for safety
|
|
*p = old[0 : n-1]
|
|
return item
|
|
}
|
|
|
|
type WorstQueue []*MetaTx
|
|
|
|
func (p WorstQueue) Len() int { return len(p) }
|
|
func (p WorstQueue) Less(i, j int) bool { return p[i].Less(p[j]) }
|
|
func (p WorstQueue) Swap(i, j int) {
|
|
p[i], p[j] = p[j], p[i]
|
|
p[i].worstIndex = i
|
|
p[j].worstIndex = j
|
|
}
|
|
func (p *WorstQueue) Push(x interface{}) {
|
|
n := len(*p)
|
|
item := x.(*MetaTx)
|
|
item.worstIndex = n
|
|
*p = append(*p, x.(*MetaTx))
|
|
}
|
|
func (p *WorstQueue) Pop() interface{} {
|
|
old := *p
|
|
n := len(old)
|
|
item := old[n-1]
|
|
old[n-1] = nil // avoid memory leak
|
|
item.worstIndex = -1 // for safety
|
|
item.currentSubPool = 0 // for safety
|
|
*p = old[0 : n-1]
|
|
return item
|
|
}
|
|
|
|
// Below is a draft code, will convert it to Loop and LoopStep funcs later
|
|
|
|
type PoolImpl struct {
|
|
recentlyConnectedPeers *recentlyConnectedPeers
|
|
lastTxPropagationTimestamp time.Time
|
|
logger log.Logger
|
|
}
|
|
|
|
func NewPool() *PoolImpl {
|
|
return &PoolImpl{
|
|
recentlyConnectedPeers: &recentlyConnectedPeers{},
|
|
}
|
|
}
|
|
|
|
// Loop - does:
|
|
// send pending byHash to p2p:
|
|
// - new byHash
|
|
// - all pooled byHash to recently connected peers
|
|
// - all local pooled byHash to random peers periodically
|
|
// promote/demote transactions
|
|
// reorgs
|
|
func (p *PoolImpl) Loop(ctx context.Context, send *Send, timings Timings) {
|
|
propagateAllNewTxsEvery := time.NewTicker(timings.propagateAllNewTxsEvery)
|
|
defer propagateAllNewTxsEvery.Stop()
|
|
|
|
syncToNewPeersEvery := time.NewTicker(timings.syncToNewPeersEvery)
|
|
defer syncToNewPeersEvery.Stop()
|
|
|
|
broadcastLocalTransactionsEvery := time.NewTicker(timings.broadcastLocalTransactionsEvery)
|
|
defer broadcastLocalTransactionsEvery.Stop()
|
|
|
|
localTxHashes := make([]byte, 0, 128)
|
|
remoteTxHashes := make([]byte, 0, 128)
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case <-propagateAllNewTxsEvery.C: // new byHash
|
|
last := p.lastTxPropagationTimestamp
|
|
p.lastTxPropagationTimestamp = time.Now()
|
|
|
|
// first broadcast all local byHash to all peers, then non-local to random sqrt(peersAmount) peers
|
|
localTxHashes = localTxHashes[:0]
|
|
p.FillLocalHashesSince(last, localTxHashes)
|
|
initialAmount := len(localTxHashes)
|
|
sentToPeers := send.BroadcastLocalPooledTxs(localTxHashes)
|
|
if initialAmount == 1 {
|
|
p.logger.Info("local tx propagated", "to_peers_amount", sentToPeers, "tx_hash", localTxHashes)
|
|
} else {
|
|
p.logger.Info("local byHash propagated", "to_peers_amount", sentToPeers, "txs_amount", initialAmount)
|
|
}
|
|
|
|
remoteTxHashes = remoteTxHashes[:0]
|
|
p.FillRemoteHashesSince(last, remoteTxHashes)
|
|
send.BroadcastRemotePooledTxs(remoteTxHashes)
|
|
case <-syncToNewPeersEvery.C: // new peer
|
|
newPeers := p.recentlyConnectedPeers.GetAndClean()
|
|
if len(newPeers) == 0 {
|
|
continue
|
|
}
|
|
p.FillRemoteHashes(remoteTxHashes[:0])
|
|
send.PropagatePooledTxsToPeersList(newPeers, remoteTxHashes)
|
|
case <-broadcastLocalTransactionsEvery.C: // periodically broadcast local byHash to random peers
|
|
p.FillLocalHashes(localTxHashes[:0])
|
|
send.BroadcastLocalPooledTxs(localTxHashes)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (p *PoolImpl) FillLocalHashesSince(since time.Time, to []byte) {}
|
|
func (p *PoolImpl) FillRemoteHashesSince(since time.Time, to []byte) {}
|
|
func (p *PoolImpl) FillLocalHashes(to []byte) {}
|
|
func (p *PoolImpl) FillRemoteHashes(to []byte) {}
|
|
|
|
// recentlyConnectedPeers does buffer IDs of recently connected good peers
|
|
// then sync of pooled Transaction can happen to all of then at once
|
|
// DoS protection and performance saving
|
|
// it doesn't track if peer disconnected, it's fine
|
|
type recentlyConnectedPeers struct {
|
|
lock sync.RWMutex
|
|
peers []PeerID
|
|
}
|
|
|
|
func (l *recentlyConnectedPeers) AddPeer(p PeerID) {
|
|
l.lock.Lock()
|
|
defer l.lock.Unlock()
|
|
l.peers = append(l.peers, p)
|
|
}
|
|
|
|
func (l *recentlyConnectedPeers) GetAndClean() []PeerID {
|
|
l.lock.Lock()
|
|
defer l.lock.Unlock()
|
|
peers := l.peers
|
|
l.peers = nil
|
|
return peers
|
|
}
|