erigon-pulse/commitment/hex_patricia_hashed.go
awskii 229b08146b
[WIP] E4 commitment keys replace (#684)
basic implementation of replacing account and storage keys encoded in
commitment branches
2022-11-21 07:39:30 +00:00

1984 lines
56 KiB
Go

/*
Copyright 2022 Erigon contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package commitment
import (
"bytes"
"encoding/binary"
"encoding/hex"
"fmt"
"hash"
"io"
"math/bits"
"strings"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/log/v3"
"github.com/ledgerwatch/erigon-lib/common/length"
"github.com/ledgerwatch/erigon-lib/rlp"
)
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
type keccakState interface {
hash.Hash
Read([]byte) (int, error)
}
// HexPatriciaHashed implements commitment based on patricia merkle tree with radix 16,
// with keys pre-hashed by keccak256
type HexPatriciaHashed struct {
root Cell // Root cell of the tree
// How many rows (starting from row 0) are currently active and have corresponding selected columns
// Last active row does not have selected column
activeRows int
// Length of the key that reflects current positioning of the grid. It maybe larger than number of active rows,
// if an account leaf cell represents multiple nibbles in the key
currentKeyLen int
accountKeyLen int
// Rows of the grid correspond to the level of depth in the patricia tree
// Columns of the grid correspond to pointers to the nodes further from the root
grid [128][16]Cell // First 64 rows of this grid are for account trie, and next 64 rows are for storage trie
currentKey [128]byte // For each row indicates which column is currently selected
depths [128]int // For each row, the depth of cells in that row
branchBefore [128]bool // For each row, whether there was a branch node in the database loaded in unfold
touchMap [128]uint16 // For each row, bitmap of cells that were either present before modification, or modified or deleted
afterMap [128]uint16 // For each row, bitmap of cells that were present after modification
keccak keccakState
keccak2 keccakState
rootChecked bool // Set to false if it is not known whether the root is empty, set to true if it is checked
rootTouched bool
rootPresent bool
trace bool
// Function used to load branch node and fill up the cells
// For each cell, it sets the cell type, clears the modified flag, fills the hash,
// and for the extension, account, and leaf type, the `l` and `k`
branchFn func(prefix []byte) ([]byte, error)
// Function used to fetch account with given plain key
accountFn func(plainKey []byte, cell *Cell) error
// Function used to fetch storage with given plain key
storageFn func(plainKey []byte, cell *Cell) error
hashAuxBuffer [128]byte // buffer to compute cell hash or write hash-related things
auxBuffer *bytes.Buffer // auxiliary buffer used during branch updates encoding
}
// represents state of the tree
type state struct {
Root []byte // encoded root cell
Depths [128]int // For each row, the depth of cells in that row
TouchMap [128]uint16 // For each row, bitmap of cells that were either present before modification, or modified or deleted
AfterMap [128]uint16 // For each row, bitmap of cells that were present after modification
BranchBefore [128]bool // For each row, whether there was a branch node in the database loaded in unfold
CurrentKey [128]byte // For each row indicates which column is currently selected
CurrentKeyLen int8
RootChecked bool // Set to false if it is not known whether the root is empty, set to true if it is checked
RootTouched bool
RootPresent bool
}
func NewHexPatriciaHashed(accountKeyLen int,
branchFn func(prefix []byte) ([]byte, error),
accountFn func(plainKey []byte, cell *Cell) error,
storageFn func(plainKey []byte, cell *Cell) error,
) *HexPatriciaHashed {
return &HexPatriciaHashed{
keccak: sha3.NewLegacyKeccak256().(keccakState),
keccak2: sha3.NewLegacyKeccak256().(keccakState),
accountKeyLen: accountKeyLen,
branchFn: branchFn,
accountFn: accountFn,
storageFn: storageFn,
auxBuffer: bytes.NewBuffer(make([]byte, 8192)),
}
}
type Cell struct {
Balance uint256.Int
Nonce uint64
hl int // Length of the hash (or embedded)
StorageLen int
apl int // length of account plain key
spl int // length of the storage plain key
downHashedLen int
extLen int
downHashedKey [128]byte
extension [64]byte
spk [length.Addr + length.Hash]byte // storage plain key
h [length.Hash]byte // cell hash
CodeHash [length.Hash]byte // hash of the bytecode
Storage [length.Hash]byte
apk [length.Addr]byte // account plain key
Delete bool
}
var (
EmptyRootHash, _ = hex.DecodeString("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
EmptyCodeHash, _ = hex.DecodeString("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")
)
func (cell *Cell) fillEmpty() {
cell.apl = 0
cell.spl = 0
cell.downHashedLen = 0
cell.extLen = 0
cell.hl = 0
cell.Nonce = 0
cell.Balance.Clear()
copy(cell.CodeHash[:], EmptyCodeHash)
cell.StorageLen = 0
cell.Delete = false
}
func (cell *Cell) fillFromUpperCell(upCell *Cell, depth, depthIncrement int) {
if upCell.downHashedLen >= depthIncrement {
cell.downHashedLen = upCell.downHashedLen - depthIncrement
} else {
cell.downHashedLen = 0
}
if upCell.downHashedLen > depthIncrement {
copy(cell.downHashedKey[:], upCell.downHashedKey[depthIncrement:upCell.downHashedLen])
}
if upCell.extLen >= depthIncrement {
cell.extLen = upCell.extLen - depthIncrement
} else {
cell.extLen = 0
}
if upCell.extLen > depthIncrement {
copy(cell.extension[:], upCell.extension[depthIncrement:upCell.extLen])
}
if depth <= 64 {
cell.apl = upCell.apl
if upCell.apl > 0 {
copy(cell.apk[:], upCell.apk[:cell.apl])
cell.Balance.Set(&upCell.Balance)
cell.Nonce = upCell.Nonce
copy(cell.CodeHash[:], upCell.CodeHash[:])
cell.extLen = upCell.extLen
if upCell.extLen > 0 {
copy(cell.extension[:], upCell.extension[:upCell.extLen])
}
}
} else {
cell.apl = 0
}
cell.spl = upCell.spl
if upCell.spl > 0 {
copy(cell.spk[:], upCell.spk[:upCell.spl])
cell.StorageLen = upCell.StorageLen
if upCell.StorageLen > 0 {
copy(cell.Storage[:], upCell.Storage[:upCell.StorageLen])
}
}
cell.hl = upCell.hl
if upCell.hl > 0 {
copy(cell.h[:], upCell.h[:upCell.hl])
}
}
func (cell *Cell) fillFromLowerCell(lowCell *Cell, lowDepth int, preExtension []byte, nibble int) {
if lowCell.apl > 0 || lowDepth < 64 {
cell.apl = lowCell.apl
}
if lowCell.apl > 0 {
copy(cell.apk[:], lowCell.apk[:cell.apl])
cell.Balance.Set(&lowCell.Balance)
cell.Nonce = lowCell.Nonce
copy(cell.CodeHash[:], lowCell.CodeHash[:])
}
cell.spl = lowCell.spl
if lowCell.spl > 0 {
copy(cell.spk[:], lowCell.spk[:cell.spl])
cell.StorageLen = lowCell.StorageLen
if lowCell.StorageLen > 0 {
copy(cell.Storage[:], lowCell.Storage[:lowCell.StorageLen])
}
}
if lowCell.hl > 0 {
if (lowCell.apl == 0 && lowDepth < 64) || (lowCell.spl == 0 && lowDepth > 64) {
// Extension is related to either accounts branch node, or storage branch node, we prepend it by preExtension | nibble
if len(preExtension) > 0 {
copy(cell.extension[:], preExtension)
}
cell.extension[len(preExtension)] = byte(nibble)
if lowCell.extLen > 0 {
copy(cell.extension[1+len(preExtension):], lowCell.extension[:lowCell.extLen])
}
cell.extLen = lowCell.extLen + 1 + len(preExtension)
} else {
// Extension is related to a storage branch node, so we copy it upwards as is
cell.extLen = lowCell.extLen
if lowCell.extLen > 0 {
copy(cell.extension[:], lowCell.extension[:lowCell.extLen])
}
}
}
cell.hl = lowCell.hl
if lowCell.hl > 0 {
copy(cell.h[:], lowCell.h[:lowCell.hl])
}
}
func hashKey(keccak keccakState, plainKey []byte, dest []byte, hashedKeyOffset int) error {
keccak.Reset()
var hashBufBack [length.Hash]byte
hashBuf := hashBufBack[:]
if _, err := keccak.Write(plainKey); err != nil {
return err
}
if _, err := keccak.Read(hashBuf); err != nil {
return err
}
hashBuf = hashBuf[hashedKeyOffset/2:]
var k int
if hashedKeyOffset%2 == 1 {
dest[0] = hashBuf[0] & 0xf
k++
hashBuf = hashBuf[1:]
}
for _, c := range hashBuf {
dest[k] = (c >> 4) & 0xf
k++
dest[k] = c & 0xf
k++
}
return nil
}
func (cell *Cell) deriveHashedKeys(depth int, keccak keccakState, accountKeyLen int) error {
extraLen := 0
if cell.apl > 0 {
if depth > 64 {
return fmt.Errorf("deriveHashedKeys accountPlainKey present at depth > 64")
}
extraLen = 64 - depth
}
if cell.spl > 0 {
if depth >= 64 {
extraLen = 128 - depth
} else {
extraLen += 64
}
}
if extraLen > 0 {
if cell.downHashedLen > 0 {
copy(cell.downHashedKey[extraLen:], cell.downHashedKey[:cell.downHashedLen])
}
cell.downHashedLen += extraLen
var hashedKeyOffset, downOffset int
if cell.apl > 0 {
if err := hashKey(keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil {
return err
}
downOffset = 64 - depth
}
if cell.spl > 0 {
if depth >= 64 {
hashedKeyOffset = depth - 64
}
if err := hashKey(keccak, cell.spk[accountKeyLen:cell.spl], cell.downHashedKey[downOffset:], hashedKeyOffset); err != nil {
return err
}
}
}
return nil
}
func (cell *Cell) fillFromFields(data []byte, pos int, fieldBits PartFlags) (int, error) {
if fieldBits&HashedKeyPart != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for hashedKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for hashedKey exp %d got %d", pos+int(l), len(data))
}
cell.downHashedLen = int(l)
cell.extLen = int(l)
if l > 0 {
copy(cell.downHashedKey[:], data[pos:pos+int(l)])
copy(cell.extension[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.downHashedLen = 0
cell.extLen = 0
}
if fieldBits&AccountPlainPart != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for accountPlainKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for accountPlainKey")
}
cell.apl = int(l)
if l > 0 {
copy(cell.apk[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.apl = 0
}
if fieldBits&StoragePlainPart != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for storagePlainKey len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for storagePlainKey")
}
cell.spl = int(l)
if l > 0 {
copy(cell.spk[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.spl = 0
}
if fieldBits&HashPart != 0 {
l, n := binary.Uvarint(data[pos:])
if n == 0 {
return 0, fmt.Errorf("fillFromFields buffer too small for hash len")
} else if n < 0 {
return 0, fmt.Errorf("fillFromFields value overflow for hash len")
}
pos += n
if len(data) < pos+int(l) {
return 0, fmt.Errorf("fillFromFields buffer too small for hash")
}
cell.hl = int(l)
if l > 0 {
copy(cell.h[:], data[pos:pos+int(l)])
pos += int(l)
}
} else {
cell.hl = 0
}
return pos, nil
}
func (cell *Cell) setStorage(value []byte) {
cell.StorageLen = len(value)
if len(value) > 0 {
copy(cell.Storage[:], value)
}
}
func (cell *Cell) setAccountFields(codeHash []byte, balance *uint256.Int, nonce uint64) {
copy(cell.CodeHash[:], codeHash)
cell.Balance.SetBytes(balance.Bytes())
cell.Nonce = nonce
}
func (cell *Cell) accountForHashing(buffer []byte, storageRootHash [length.Hash]byte) int {
balanceBytes := 0
if !cell.Balance.LtUint64(128) {
balanceBytes = cell.Balance.ByteLen()
}
var nonceBytes int
if cell.Nonce < 128 && cell.Nonce != 0 {
nonceBytes = 0
} else {
nonceBytes = (bits.Len64(cell.Nonce) + 7) / 8
}
var structLength = uint(balanceBytes + nonceBytes + 2)
structLength += 66 // Two 32-byte arrays + 2 prefixes
var pos int
if structLength < 56 {
buffer[0] = byte(192 + structLength)
pos = 1
} else {
lengthBytes := (bits.Len(structLength) + 7) / 8
buffer[0] = byte(247 + lengthBytes)
for i := lengthBytes; i > 0; i-- {
buffer[i] = byte(structLength)
structLength >>= 8
}
pos = lengthBytes + 1
}
// Encoding nonce
if cell.Nonce < 128 && cell.Nonce != 0 {
buffer[pos] = byte(cell.Nonce)
} else {
buffer[pos] = byte(128 + nonceBytes)
var nonce = cell.Nonce
for i := nonceBytes; i > 0; i-- {
buffer[pos+i] = byte(nonce)
nonce >>= 8
}
}
pos += 1 + nonceBytes
// Encoding balance
if cell.Balance.LtUint64(128) && !cell.Balance.IsZero() {
buffer[pos] = byte(cell.Balance.Uint64())
pos++
} else {
buffer[pos] = byte(128 + balanceBytes)
pos++
cell.Balance.WriteToSlice(buffer[pos : pos+balanceBytes])
pos += balanceBytes
}
// Encoding Root and CodeHash
buffer[pos] = 128 + 32
pos++
copy(buffer[pos:], storageRootHash[:])
pos += 32
buffer[pos] = 128 + 32
pos++
copy(buffer[pos:], cell.CodeHash[:])
pos += 32
return pos
}
func (hph *HexPatriciaHashed) completeLeafHash(buf, keyPrefix []byte, kp, kl, compactLen int, key []byte, compact0 byte, ni int, val rlp.RlpSerializable, singleton bool) ([]byte, error) {
totalLen := kp + kl + val.DoubleRLPLen()
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
embedded := !singleton && totalLen+pt < length.Hash
var writer io.Writer
if embedded {
//hph.byteArrayWriter.Setup(buf)
hph.auxBuffer.Reset()
writer = hph.auxBuffer
} else {
hph.keccak.Reset()
writer = hph.keccak
}
if _, err := writer.Write(lenPrefix[:pt]); err != nil {
return nil, err
}
if _, err := writer.Write(keyPrefix[:kp]); err != nil {
return nil, err
}
var b [1]byte
b[0] = compact0
if _, err := writer.Write(b[:]); err != nil {
return nil, err
}
for i := 1; i < compactLen; i++ {
b[0] = key[ni]*16 + key[ni+1]
if _, err := writer.Write(b[:]); err != nil {
return nil, err
}
ni += 2
}
var prefixBuf [8]byte
if err := val.ToDoubleRLP(writer, prefixBuf[:]); err != nil {
return nil, err
}
if embedded {
buf = hph.auxBuffer.Bytes()
} else {
var hashBuf [33]byte
hashBuf[0] = 0x80 + length.Hash
if _, err := hph.keccak.Read(hashBuf[1:]); err != nil {
return nil, err
}
buf = append(buf, hashBuf[:]...)
}
return buf, nil
}
func (hph *HexPatriciaHashed) leafHashWithKeyVal(buf, key []byte, val rlp.RlpSerializableBytes, singleton bool) ([]byte, error) {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, singleton)
}
func (hph *HexPatriciaHashed) accountLeafHashWithKey(buf, key []byte, val rlp.RlpSerializable) ([]byte, error) {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 48 + key[0] // Odd (1<<4) + first nibble
ni = 1
} else {
compact0 = 32
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 16 + key[0] // Odd (1<<4) + first nibble
ni = 1
}
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = byte(128 + compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
return hph.completeLeafHash(buf, keyPrefix[:], kp, kl, compactLen, key, compact0, ni, val, true)
}
func (hph *HexPatriciaHashed) extensionHash(key []byte, hash []byte) ([length.Hash]byte, error) {
var hashBuf [length.Hash]byte
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
ni = 1
}
}
var keyPrefix [1]byte
if compactLen > 1 {
keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
totalLen := kp + kl + 33
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
hph.keccak.Reset()
if _, err := hph.keccak.Write(lenPrefix[:pt]); err != nil {
return hashBuf, err
}
if _, err := hph.keccak.Write(keyPrefix[:kp]); err != nil {
return hashBuf, err
}
var b [1]byte
b[0] = compact0
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
for i := 1; i < compactLen; i++ {
b[0] = key[ni]*16 + key[ni+1]
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
ni += 2
}
b[0] = 0x80 + length.Hash
if _, err := hph.keccak.Write(b[:]); err != nil {
return hashBuf, err
}
if _, err := hph.keccak.Write(hash); err != nil {
return hashBuf, err
}
// Replace previous hash with the new one
if _, err := hph.keccak.Read(hashBuf[:]); err != nil {
return hashBuf, err
}
return hashBuf, nil
}
func (hph *HexPatriciaHashed) computeCellHashLen(cell *Cell, depth int) int {
if cell.spl > 0 && depth >= 64 {
keyLen := 128 - depth + 1 // Length of hex key with terminator character
var kp, kl int
compactLen := (keyLen-1)/2 + 1
if compactLen > 1 {
kp = 1
kl = compactLen
} else {
kl = 1
}
val := rlp.RlpSerializableBytes(cell.Storage[:cell.StorageLen])
totalLen := kp + kl + val.DoubleRLPLen()
var lenPrefix [4]byte
pt := rlp.GenerateStructLen(lenPrefix[:], totalLen)
if totalLen+pt < length.Hash {
return totalLen + pt
}
}
return length.Hash + 1
}
func (hph *HexPatriciaHashed) computeCellHash(cell *Cell, depth int, buf []byte) ([]byte, error) {
var err error
var storageRootHash [length.Hash]byte
storageRootHashIsSet := false
if cell.spl > 0 {
var hashedKeyOffset int
if depth >= 64 {
hashedKeyOffset = depth - 64
}
singleton := depth <= 64
if err := hashKey(hph.keccak, cell.spk[hph.accountKeyLen:cell.spl], cell.downHashedKey[:], hashedKeyOffset); err != nil {
return nil, err
}
cell.downHashedKey[64-hashedKeyOffset] = 16 // Add terminator
if singleton {
if hph.trace {
fmt.Printf("leafHashWithKeyVal(singleton) for [%x]=>[%x]\n", cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen])
}
aux := make([]byte, 0, 33)
if aux, err = hph.leafHashWithKeyVal(aux, cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen], true); err != nil {
return nil, err
}
storageRootHash = *(*[length.Hash]byte)(aux[1:])
storageRootHashIsSet = true
} else {
if hph.trace {
fmt.Printf("leafHashWithKeyVal for [%x]=>[%x]\n", cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen])
}
return hph.leafHashWithKeyVal(buf, cell.downHashedKey[:64-hashedKeyOffset+1], cell.Storage[:cell.StorageLen], false)
}
}
if cell.apl > 0 {
if err := hashKey(hph.keccak, cell.apk[:cell.apl], cell.downHashedKey[:], depth); err != nil {
return nil, err
}
cell.downHashedKey[64-depth] = 16 // Add terminator
if !storageRootHashIsSet {
if cell.extLen > 0 {
// Extension
if cell.hl > 0 {
if hph.trace {
fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl])
}
if storageRootHash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil {
return nil, err
}
} else {
return nil, fmt.Errorf("computeCellHash extension without hash")
}
} else if cell.hl > 0 {
storageRootHash = cell.h
} else {
storageRootHash = *(*[length.Hash]byte)(EmptyRootHash)
}
}
var valBuf [128]byte
valLen := cell.accountForHashing(valBuf[:], storageRootHash)
if hph.trace {
fmt.Printf("accountLeafHashWithKey for [%x]=>[%x]\n", hph.hashAuxBuffer[:65-depth], valBuf[:valLen])
}
return hph.accountLeafHashWithKey(buf, cell.downHashedKey[:65-depth], rlp.RlpEncodedBytes(valBuf[:valLen]))
}
buf = append(buf, 0x80+32)
if cell.extLen > 0 {
// Extension
if cell.hl > 0 {
if hph.trace {
fmt.Printf("extensionHash for [%x]=>[%x]\n", cell.extension[:cell.extLen], cell.h[:cell.hl])
}
var hash [length.Hash]byte
if hash, err = hph.extensionHash(cell.extension[:cell.extLen], cell.h[:cell.hl]); err != nil {
return nil, err
}
buf = append(buf, hash[:]...)
} else {
return nil, fmt.Errorf("computeCellHash extension without hash")
}
} else if cell.hl > 0 {
buf = append(buf, cell.h[:cell.hl]...)
} else {
buf = append(buf, EmptyRootHash...)
}
return buf, nil
}
func (hph *HexPatriciaHashed) needUnfolding(hashedKey []byte) int {
var cell *Cell
var depth int
if hph.activeRows == 0 {
if hph.trace {
fmt.Printf("needUnfolding root, rootChecked = %t\n", hph.rootChecked)
}
if hph.rootChecked && hph.root.downHashedLen == 0 && hph.root.hl == 0 {
// Previously checked, empty root, no unfolding needed
return 0
}
cell = &hph.root
if cell.downHashedLen == 0 && cell.hl == 0 && !hph.rootChecked {
// Need to attempt to unfold the root
return 1
}
} else {
col := int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[hph.activeRows-1][col]
depth = hph.depths[hph.activeRows-1]
if hph.trace {
fmt.Printf("needUnfolding cell (%d, %x), currentKey=[%x], depth=%d, cell.h=[%x]\n", hph.activeRows-1, col, hph.currentKey[:hph.currentKeyLen], depth, cell.h[:cell.hl])
}
}
if len(hashedKey) <= depth {
return 0
}
if cell.downHashedLen == 0 {
if cell.hl == 0 {
// cell is empty, no need to unfold further
return 0
} else {
// unfold branch node
return 1
}
}
cpl := commonPrefixLen(hashedKey[depth:], cell.downHashedKey[:cell.downHashedLen-1])
if hph.trace {
fmt.Printf("cpl=%d, cell.downHashedKey=[%x], depth=%d, hashedKey[depth:]=[%x]\n", cpl, cell.downHashedKey[:cell.downHashedLen], depth, hashedKey[depth:])
}
unfolding := cpl + 1
if depth < 64 && depth+unfolding > 64 {
// This is to make sure that unfolding always breaks at the level where storage subtrees start
unfolding = 64 - depth
if hph.trace {
fmt.Printf("adjusted unfolding=%d\n", unfolding)
}
}
return unfolding
}
// unfoldBranchNode returns true if unfolding has been done
func (hph *HexPatriciaHashed) unfoldBranchNode(row int, deleted bool, depth int) (bool, error) {
branchData, err := hph.branchFn(hexToCompact(hph.currentKey[:hph.currentKeyLen]))
if err != nil {
return false, err
}
if !hph.rootChecked && hph.currentKeyLen == 0 && len(branchData) == 0 {
// Special case - empty or deleted root
hph.rootChecked = true
return false, nil
}
if len(branchData) == 0 {
log.Warn("got empty branch data during unfold", "key", hex.EncodeToString(hexToCompact(hph.currentKey[:hph.currentKeyLen])), "row", row, "depth", depth, "deleted", deleted)
}
hph.branchBefore[row] = true
bitmap := binary.BigEndian.Uint16(branchData[0:])
pos := 2
if deleted {
// All cells come as deleted (touched but not present after)
hph.afterMap[row] = 0
hph.touchMap[row] = bitmap
} else {
hph.afterMap[row] = bitmap
hph.touchMap[row] = 0
}
//fmt.Printf("unfoldBranchNode [%x], afterMap = [%016b], touchMap = [%016b]\n", branchData, hph.afterMap[row], hph.touchMap[row])
// Loop iterating over the set bits of modMask
for bitset, j := bitmap, 0; bitset != 0; j++ {
bit := bitset & -bitset
nibble := bits.TrailingZeros16(bit)
cell := &hph.grid[row][nibble]
fieldBits := branchData[pos]
pos++
var err error
if pos, err = cell.fillFromFields(branchData, pos, PartFlags(fieldBits)); err != nil {
return false, fmt.Errorf("prefix [%x], branchData[%x]: %w", hph.currentKey[:hph.currentKeyLen], branchData, err)
}
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d, hash=[%x], a=[%x], s=[%x], ex=[%x]\n", row, nibble, depth, cell.h[:cell.hl], cell.apk[:cell.apl], cell.spk[:cell.spl], cell.extension[:cell.extLen])
}
if cell.apl > 0 {
hph.accountFn(cell.apk[:cell.apl], cell)
if hph.trace {
fmt.Printf("accountFn[%x] return balance=%d, nonce=%d code=%x\n", cell.apk[:cell.apl], &cell.Balance, cell.Nonce, cell.CodeHash[:])
}
}
if cell.spl > 0 {
hph.storageFn(cell.spk[:cell.spl], cell)
}
if err = cell.deriveHashedKeys(depth, hph.keccak, hph.accountKeyLen); err != nil {
return false, err
}
bitset ^= bit
}
return true, nil
}
func (hph *HexPatriciaHashed) unfold(hashedKey []byte, unfolding int) error {
if hph.trace {
fmt.Printf("unfold %d: activeRows: %d\n", unfolding, hph.activeRows)
}
var upCell *Cell
var touched, present bool
var col byte
var upDepth, depth int
if hph.activeRows == 0 {
if hph.rootChecked && hph.root.hl == 0 && hph.root.downHashedLen == 0 {
// No unfolding for empty root
return nil
}
upCell = &hph.root
touched = hph.rootTouched
present = hph.rootPresent
if hph.trace {
fmt.Printf("unfold root, touched %t, present %t, column %d\n", touched, present, col)
}
} else {
upDepth = hph.depths[hph.activeRows-1]
col = hashedKey[upDepth-1]
upCell = &hph.grid[hph.activeRows-1][col]
touched = hph.touchMap[hph.activeRows-1]&(uint16(1)<<col) != 0
present = hph.afterMap[hph.activeRows-1]&(uint16(1)<<col) != 0
if hph.trace {
fmt.Printf("upCell (%d, %x), touched %t, present %t\n", hph.activeRows-1, col, touched, present)
}
hph.currentKey[hph.currentKeyLen] = col
hph.currentKeyLen++
}
row := hph.activeRows
for i := 0; i < 16; i++ {
hph.grid[row][i].fillEmpty()
}
hph.touchMap[row] = 0
hph.afterMap[row] = 0
hph.branchBefore[row] = false
if upCell.downHashedLen == 0 {
depth = upDepth + 1
if unfolded, err := hph.unfoldBranchNode(row, touched && !present /* deleted */, depth); err != nil {
return err
} else if !unfolded {
// Return here to prevent activeRow from being incremented
return nil
}
} else if upCell.downHashedLen >= unfolding {
depth = upDepth + unfolding
nibble := upCell.downHashedKey[unfolding-1]
if touched {
hph.touchMap[row] = uint16(1) << nibble
}
if present {
hph.afterMap[row] = uint16(1) << nibble
}
cell := &hph.grid[row][nibble]
cell.fillFromUpperCell(upCell, depth, unfolding)
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d\n", row, nibble, depth)
}
if row >= 64 {
cell.apl = 0
}
if unfolding > 1 {
copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:unfolding-1])
}
hph.currentKeyLen += unfolding - 1
} else {
// upCell.downHashedLen < unfolding
depth = upDepth + upCell.downHashedLen
nibble := upCell.downHashedKey[upCell.downHashedLen-1]
if touched {
hph.touchMap[row] = uint16(1) << nibble
}
if present {
hph.afterMap[row] = uint16(1) << nibble
}
cell := &hph.grid[row][nibble]
cell.fillFromUpperCell(upCell, depth, upCell.downHashedLen)
if hph.trace {
fmt.Printf("cell (%d, %x) depth=%d\n", row, nibble, depth)
}
if row >= 64 {
cell.apl = 0
}
if upCell.downHashedLen > 1 {
copy(hph.currentKey[hph.currentKeyLen:], upCell.downHashedKey[:upCell.downHashedLen-1])
}
hph.currentKeyLen += upCell.downHashedLen - 1
}
hph.depths[hph.activeRows] = depth
hph.activeRows++
return nil
}
func (hph *HexPatriciaHashed) needFolding(hashedKey []byte) bool {
return !bytes.HasPrefix(hashedKey, hph.currentKey[:hph.currentKeyLen])
}
// The purpose of fold is to reduce hph.currentKey[:hph.currentKeyLen]. It should be invoked
// until that current key becomes a prefix of hashedKey that we will proccess next
// (in other words until the needFolding function returns 0)
func (hph *HexPatriciaHashed) fold() (branchData BranchData, updateKey []byte, err error) {
updateKeyLen := hph.currentKeyLen
if hph.activeRows == 0 {
return nil, nil, fmt.Errorf("cannot fold - no active rows")
}
if hph.trace {
fmt.Printf("fold: activeRows: %d, currentKey: [%x], touchMap: %016b, afterMap: %016b\n", hph.activeRows, hph.currentKey[:hph.currentKeyLen], hph.touchMap[hph.activeRows-1], hph.afterMap[hph.activeRows-1])
}
// Move information to the row above
row := hph.activeRows - 1
var upCell *Cell
var col int
var upDepth int
if hph.activeRows == 1 {
if hph.trace {
fmt.Printf("upcell is root\n")
}
upCell = &hph.root
} else {
upDepth = hph.depths[hph.activeRows-2]
col = int(hph.currentKey[upDepth-1])
if hph.trace {
fmt.Printf("upcell is (%d x %x), upDepth=%d\n", row-1, col, upDepth)
}
upCell = &hph.grid[row-1][col]
}
depth := hph.depths[hph.activeRows-1]
updateKey = hexToCompact(hph.currentKey[:updateKeyLen])
partsCount := bits.OnesCount16(hph.afterMap[row])
if hph.trace {
fmt.Printf("touchMap[%d]=%016b, afterMap[%d]=%016b\n", row, hph.touchMap[row], row, hph.afterMap[row])
}
switch partsCount {
case 0:
// Everything deleted
if hph.touchMap[row] != 0 {
if row == 0 {
// Root is deleted because the tree is empty
hph.rootTouched = true
hph.rootPresent = false
} else if upDepth == 64 {
// Special case - all storage items of an account have been deleted, but it does not automatically delete the account, just makes it empty storage
// Therefore we are not propagating deletion upwards, but turn it into a modification
hph.touchMap[row-1] |= (uint16(1) << col)
} else {
// Deletion is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
hph.afterMap[row-1] &^= (uint16(1) << col)
}
}
upCell.hl = 0
upCell.apl = 0
upCell.spl = 0
upCell.extLen = 0
upCell.downHashedLen = 0
if hph.branchBefore[row] {
branchData, _, err = EncodeBranch(0, hph.touchMap[row], 0, func(nibble int, skip bool) (*Cell, error) { return nil, nil })
if err != nil {
return nil, updateKey, fmt.Errorf("failed to encode leaf node update: %w", err)
}
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
case 1:
// Leaf or extension node
if hph.touchMap[row] != 0 {
// any modifications
if row == 0 {
hph.rootTouched = true
} else {
// Modifiction is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
}
}
nibble := bits.TrailingZeros16(hph.afterMap[row])
cell := &hph.grid[row][nibble]
upCell.extLen = 0
upCell.fillFromLowerCell(cell, depth, hph.currentKey[upDepth:hph.currentKeyLen], nibble)
// Delete if it existed
if hph.branchBefore[row] {
//branchData, _, err = hph.EncodeBranchDirectAccess(0, row, depth)
branchData, _, err = EncodeBranch(0, hph.touchMap[row], 0, func(nibble int, skip bool) (*Cell, error) { return nil, nil })
if err != nil {
return nil, updateKey, fmt.Errorf("failed to encode leaf node update: %w", err)
}
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
default:
// Branch node
if hph.touchMap[row] != 0 {
// any modifications
if row == 0 {
hph.rootTouched = true
} else {
// Modifiction is propagated upwards
hph.touchMap[row-1] |= (uint16(1) << col)
}
}
bitmap := hph.touchMap[row] & hph.afterMap[row]
if !hph.branchBefore[row] {
// There was no branch node before, so we need to touch even the singular child that existed
hph.touchMap[row] |= hph.afterMap[row]
bitmap |= hph.afterMap[row]
}
// Calculate total length of all hashes
totalBranchLen := 17 - partsCount // For every empty cell, one byte
for bitset, j := hph.afterMap[row], 0; bitset != 0; j++ {
bit := bitset & -bitset
nibble := bits.TrailingZeros16(bit)
cell := &hph.grid[row][nibble]
totalBranchLen += hph.computeCellHashLen(cell, depth)
bitset ^= bit
}
hph.keccak2.Reset()
pt := rlp.GenerateStructLen(hph.hashAuxBuffer[:], totalBranchLen)
if _, err := hph.keccak2.Write(hph.hashAuxBuffer[:pt]); err != nil {
return nil, nil, err
}
b := [...]byte{0x80}
cellGetter := func(nibble int, skip bool) (*Cell, error) {
if skip {
if _, err := hph.keccak2.Write(b[:]); err != nil {
return nil, fmt.Errorf("failed to write empty nibble to hash: %w", err)
}
if hph.trace {
fmt.Printf("%x: empty(%d,%x)\n", nibble, row, nibble)
}
return nil, nil
}
cell := &hph.grid[row][nibble]
cellHash, err := hph.computeCellHash(cell, depth, hph.hashAuxBuffer[:0])
if err != nil {
return nil, err
}
if hph.trace {
fmt.Printf("%x: computeCellHash(%d,%x,depth=%d)=[%x]\n", nibble, row, nibble, depth, cellHash)
}
if _, err := hph.keccak2.Write(cellHash); err != nil {
return nil, err
}
return cell, nil
}
var lastNibble int
var err error
_ = cellGetter
//branchData, lastNibble, err = hph.EncodeBranchDirectAccess(bitmap, row, depth, branchData)
branchData, lastNibble, err = EncodeBranch(bitmap, hph.touchMap[row], hph.afterMap[row], cellGetter)
if err != nil {
return nil, nil, fmt.Errorf("failed to encode branch update: %w", err)
}
for i := lastNibble; i < 17; i++ {
if _, err := hph.keccak2.Write(b[:]); err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("%x: empty(%d,%x)\n", i, row, i)
}
}
upCell.extLen = depth - upDepth - 1
upCell.downHashedLen = upCell.extLen
if upCell.extLen > 0 {
copy(upCell.extension[:], hph.currentKey[upDepth:hph.currentKeyLen])
copy(upCell.downHashedKey[:], hph.currentKey[upDepth:hph.currentKeyLen])
}
if depth < 64 {
upCell.apl = 0
}
upCell.spl = 0
upCell.hl = 32
if _, err := hph.keccak2.Read(upCell.h[:]); err != nil {
return nil, nil, err
}
if hph.trace {
fmt.Printf("} [%x]\n", upCell.h[:])
}
hph.activeRows--
if upDepth > 0 {
hph.currentKeyLen = upDepth - 1
} else {
hph.currentKeyLen = 0
}
}
if branchData != nil {
if hph.trace {
fmt.Printf("fold: update key: %x, branchData: [%x]\n", CompactedKeyToHex(updateKey), branchData)
}
}
return branchData, updateKey, nil
}
func (hph *HexPatriciaHashed) deleteCell(hashedKey []byte) {
if hph.trace {
fmt.Printf("deleteCell, activeRows = %d\n", hph.activeRows)
}
var cell *Cell
if hph.activeRows == 0 {
// Remove the root
cell = &hph.root
hph.rootTouched = true
hph.rootPresent = false
} else {
row := hph.activeRows - 1
if hph.depths[row] < len(hashedKey) {
if hph.trace {
fmt.Printf("deleteCell skipping spurious delete depth=%d, len(hashedKey)=%d\n", hph.depths[row], len(hashedKey))
}
return
}
col := int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[row][col]
if hph.afterMap[row]&(uint16(1)<<col) != 0 {
// Prevent "spurios deletions", i.e. deletion of absent items
hph.touchMap[row] |= (uint16(1) << col)
hph.afterMap[row] &^= (uint16(1) << col)
if hph.trace {
fmt.Printf("deleteCell setting (%d, %x)\n", row, col)
}
} else {
if hph.trace {
fmt.Printf("deleteCell ignoring (%d, %x)\n", row, col)
}
}
}
cell.extLen = 0
cell.Balance.Clear()
copy(cell.CodeHash[:], EmptyCodeHash)
cell.Nonce = 0
}
func (hph *HexPatriciaHashed) updateCell(plainKey, hashedKey []byte) *Cell {
var cell *Cell
var col, depth int
if hph.activeRows == 0 {
cell = &hph.root
hph.rootTouched, hph.rootPresent = true, true
} else {
row := hph.activeRows - 1
depth = hph.depths[row]
col = int(hashedKey[hph.currentKeyLen])
cell = &hph.grid[row][col]
hph.touchMap[row] |= (uint16(1) << col)
hph.afterMap[row] |= (uint16(1) << col)
if hph.trace {
fmt.Printf("updateCell setting (%d, %x), depth=%d\n", row, col, depth)
}
}
if cell.downHashedLen == 0 {
copy(cell.downHashedKey[:], hashedKey[depth:])
cell.downHashedLen = len(hashedKey) - depth
if hph.trace {
fmt.Printf("set downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
} else {
if hph.trace {
fmt.Printf("left downHasheKey=[%x]\n", cell.downHashedKey[:cell.downHashedLen])
}
}
if len(hashedKey) == 2*length.Hash { // set account key
cell.apl = len(plainKey)
copy(cell.apk[:], plainKey)
} else { // set storage key
cell.spl = len(plainKey)
copy(cell.spk[:], plainKey)
}
return cell
}
func (hph *HexPatriciaHashed) RootHash() ([]byte, error) {
hash, err := hph.computeCellHash(&hph.root, 0, nil)
if err != nil {
return nil, err
}
return hash[1:], nil // first byte is 128+hash_len
}
func (hph *HexPatriciaHashed) ReviewKeys(plainKeys, hashedKeys [][]byte) (rootHash []byte, branchNodeUpdates map[string]BranchData, err error) {
branchNodeUpdates = make(map[string]BranchData)
stagedCell := new(Cell)
for i, hashedKey := range hashedKeys {
plainKey := plainKeys[i]
if hph.trace {
fmt.Printf("plainKey=[%x], hashedKey=[%x], currentKey=[%x]\n", plainKey, hashedKey, hph.currentKey[:hph.currentKeyLen])
}
// Keep folding until the currentKey is the prefix of the key we modify
for hph.needFolding(hashedKey) {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, nil, fmt.Errorf("fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
// Now unfold until we step on an empty cell
for unfolding := hph.needUnfolding(hashedKey); unfolding > 0; unfolding = hph.needUnfolding(hashedKey) {
if err := hph.unfold(hashedKey, unfolding); err != nil {
return nil, nil, fmt.Errorf("unfold: %w", err)
}
}
// Update the cell
stagedCell.fillEmpty()
if len(plainKey) == hph.accountKeyLen {
if err := hph.accountFn(plainKey, stagedCell); err != nil {
return nil, nil, fmt.Errorf("accountFn for key %x failed: %w", plainKey, err)
}
if !stagedCell.Delete {
cell := hph.updateCell(plainKey, hashedKey)
cell.setAccountFields(stagedCell.CodeHash[:], &stagedCell.Balance, stagedCell.Nonce)
if hph.trace {
fmt.Printf("accountFn reading key %x => balance=%v nonce=%v codeHash=%x\n", cell.apk, cell.Balance.Uint64(), cell.Nonce, cell.CodeHash)
}
}
} else {
if err = hph.storageFn(plainKey, stagedCell); err != nil {
return nil, nil, fmt.Errorf("storageFn for key %x failed: %w", plainKey, err)
}
if !stagedCell.Delete {
hph.updateCell(plainKey, hashedKey).setStorage(stagedCell.Storage[:stagedCell.StorageLen])
if hph.trace {
fmt.Printf("storageFn reading key %x => %x\n", plainKey, stagedCell.Storage[:stagedCell.StorageLen])
}
}
}
if stagedCell.Delete {
if hph.trace {
fmt.Printf("delete cell %x hash %x\n", plainKey, hashedKey)
}
hph.deleteCell(hashedKey)
}
}
// Folding everything up to the root
for hph.activeRows > 0 {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, nil, fmt.Errorf("final fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
rootHash, err = hph.RootHash()
if err != nil {
return nil, branchNodeUpdates, fmt.Errorf("root hash evaluation failed: %w", err)
}
return rootHash, branchNodeUpdates, nil
}
func (hph *HexPatriciaHashed) SetTrace(trace bool) { hph.trace = trace }
func (hph *HexPatriciaHashed) Variant() TrieVariant { return VariantHexPatriciaTrie }
// Reset allows HexPatriciaHashed instance to be reused for the new commitment calculation
func (hph *HexPatriciaHashed) Reset() {
hph.rootChecked = false
hph.root.hl = 0
hph.root.downHashedLen = 0
hph.root.apl = 0
hph.root.spl = 0
hph.root.extLen = 0
copy(hph.root.CodeHash[:], EmptyCodeHash)
hph.root.StorageLen = 0
hph.root.Balance.Clear()
hph.root.Nonce = 0
hph.rootTouched = false
hph.rootPresent = true
}
func (hph *HexPatriciaHashed) ResetFns(
branchFn func(prefix []byte) ([]byte, error),
accountFn func(plainKey []byte, cell *Cell) error,
storageFn func(plainKey []byte, cell *Cell) error,
) {
hph.branchFn = branchFn
hph.accountFn = accountFn
hph.storageFn = storageFn
}
type stateRootFlag int8
var (
stateRootPresent stateRootFlag = 1
stateRootChecked stateRootFlag = 2
stateRootTouched stateRootFlag = 4
)
func (s *state) Encode(buf []byte) ([]byte, error) {
var rootFlags stateRootFlag
if s.RootPresent {
rootFlags |= stateRootPresent
}
if s.RootChecked {
rootFlags |= stateRootChecked
}
if s.RootTouched {
rootFlags |= stateRootTouched
}
ee := bytes.NewBuffer(buf)
if err := binary.Write(ee, binary.BigEndian, s.CurrentKeyLen); err != nil {
return nil, fmt.Errorf("encode currentKeyLen: %w", err)
}
if err := binary.Write(ee, binary.BigEndian, int8(rootFlags)); err != nil {
return nil, fmt.Errorf("encode rootFlags: %w", err)
}
if n, err := ee.Write(s.CurrentKey[:]); err != nil || n != len(s.CurrentKey) {
return nil, fmt.Errorf("encode currentKey: %w", err)
}
if err := binary.Write(ee, binary.BigEndian, uint16(len(s.Root))); err != nil {
return nil, fmt.Errorf("encode root len: %w", err)
}
if n, err := ee.Write(s.Root); err != nil || n != len(s.Root) {
return nil, fmt.Errorf("encode root: %w", err)
}
d := make([]byte, len(s.Depths))
for i := 0; i < len(s.Depths); i++ {
d[i] = byte(s.Depths[i])
}
if n, err := ee.Write(d); err != nil || n != len(s.Depths) {
return nil, fmt.Errorf("encode depths: %w", err)
}
if err := binary.Write(ee, binary.BigEndian, s.TouchMap); err != nil {
return nil, fmt.Errorf("encode touchMap: %w", err)
}
if err := binary.Write(ee, binary.BigEndian, s.AfterMap); err != nil {
return nil, fmt.Errorf("encode afterMap: %w", err)
}
var before1, before2 uint64
for i := 0; i < 64; i++ {
if s.BranchBefore[i] {
before1 |= 1 << i
}
}
for i, j := 64, 0; i < 128; i, j = i+1, j+1 {
if s.BranchBefore[i] {
before2 |= 1 << j
}
}
if err := binary.Write(ee, binary.BigEndian, before1); err != nil {
return nil, fmt.Errorf("encode branchBefore_1: %w", err)
}
if err := binary.Write(ee, binary.BigEndian, before2); err != nil {
return nil, fmt.Errorf("encode branchBefore_2: %w", err)
}
return ee.Bytes(), nil
}
func (s *state) Decode(buf []byte) error {
aux := bytes.NewBuffer(buf)
if err := binary.Read(aux, binary.BigEndian, &s.CurrentKeyLen); err != nil {
return fmt.Errorf("currentKeyLen: %w", err)
}
var rootFlags stateRootFlag
if err := binary.Read(aux, binary.BigEndian, &rootFlags); err != nil {
return fmt.Errorf("rootFlags: %w", err)
}
if rootFlags&stateRootPresent != 0 {
s.RootPresent = true
}
if rootFlags&stateRootTouched != 0 {
s.RootTouched = true
}
if rootFlags&stateRootChecked != 0 {
s.RootChecked = true
}
if n, err := aux.Read(s.CurrentKey[:]); err != nil || n != 128 {
return fmt.Errorf("currentKey: %w", err)
}
var rootSize uint16
if err := binary.Read(aux, binary.BigEndian, &rootSize); err != nil {
return fmt.Errorf("root size: %w", err)
}
s.Root = make([]byte, rootSize)
if _, err := aux.Read(s.Root); err != nil {
return fmt.Errorf("root: %w", err)
}
d := make([]byte, len(s.Depths))
if err := binary.Read(aux, binary.BigEndian, &d); err != nil {
return fmt.Errorf("depths: %w", err)
}
for i := 0; i < len(s.Depths); i++ {
s.Depths[i] = int(d[i])
}
if err := binary.Read(aux, binary.BigEndian, &s.TouchMap); err != nil {
return fmt.Errorf("touchMap: %w", err)
}
if err := binary.Read(aux, binary.BigEndian, &s.AfterMap); err != nil {
return fmt.Errorf("afterMap: %w", err)
}
var branch1, branch2 uint64
if err := binary.Read(aux, binary.BigEndian, &branch1); err != nil {
return fmt.Errorf("branchBefore1: %w", err)
}
if err := binary.Read(aux, binary.BigEndian, &branch2); err != nil {
return fmt.Errorf("branchBefore2: %w", err)
}
for i := 0; i < 64; i++ {
if branch1&(1<<i) != 0 {
s.BranchBefore[i] = true
}
}
for i, j := 64, 0; i < 128; i, j = i+1, j+1 {
if branch2&(1<<j) != 0 {
s.BranchBefore[i] = true
}
}
return nil
}
func (c *Cell) bytes() []byte {
var pos = 1
size := 1 + c.hl + 1 + c.apl + c.spl + 1 + c.downHashedLen + 1 + c.extLen + 1 // max size
buf := make([]byte, size)
var flags uint8
if c.hl != 0 {
flags |= 1
buf[pos] = byte(c.hl)
pos++
copy(buf[pos:pos+c.hl], c.h[:])
pos += c.hl
}
if c.apl != 0 {
flags |= 2
buf[pos] = byte(c.hl)
pos++
copy(buf[pos:pos+c.apl], c.apk[:])
pos += c.apl
}
if c.spl != 0 {
flags |= 4
buf[pos] = byte(c.spl)
pos++
copy(buf[pos:pos+c.spl], c.spk[:])
pos += c.spl
}
if c.downHashedLen != 0 {
flags |= 8
buf[pos] = byte(c.downHashedLen)
pos++
copy(buf[pos:pos+c.downHashedLen], c.downHashedKey[:])
pos += c.downHashedLen
}
if c.extLen != 0 {
flags |= 16
buf[pos] = byte(c.extLen)
pos++
copy(buf[pos:pos+c.downHashedLen], c.downHashedKey[:])
//pos += c.downHashedLen
}
buf[0] = flags
return buf
}
func (c *Cell) decodeBytes(buf []byte) error {
if len(buf) < 1 {
return fmt.Errorf("invalid buffer size to contain Cell (at least 1 byte expected)")
}
c.fillEmpty()
var pos int
flags := buf[pos]
pos++
if flags&1 != 0 {
c.hl = int(buf[pos])
pos++
copy(c.h[:], buf[pos:pos+c.hl])
pos += c.hl
}
if flags&2 != 0 {
c.apl = int(buf[pos])
pos++
copy(c.apk[:], buf[pos:pos+c.apl])
pos += c.apl
}
if flags&4 != 0 {
c.spl = int(buf[pos])
pos++
copy(c.spk[:], buf[pos:pos+c.spl])
pos += c.spl
}
if flags&8 != 0 {
c.downHashedLen = int(buf[pos])
pos++
copy(c.downHashedKey[:], buf[pos:pos+c.downHashedLen])
pos += c.downHashedLen
}
if flags&16 != 0 {
c.extLen = int(buf[pos])
pos++
copy(c.extension[:], buf[pos:pos+c.extLen])
//pos += c.extLen
}
return nil
}
// Encode current state of hph into bytes
func (hph *HexPatriciaHashed) EncodeCurrentState(buf []byte) ([]byte, error) {
s := state{
CurrentKeyLen: int8(hph.currentKeyLen),
RootChecked: hph.rootChecked,
RootTouched: hph.rootTouched,
RootPresent: hph.rootPresent,
Root: make([]byte, 0),
}
s.Root = hph.root.bytes()
copy(s.CurrentKey[:], hph.currentKey[:])
copy(s.Depths[:], hph.depths[:])
copy(s.BranchBefore[:], hph.branchBefore[:])
copy(s.TouchMap[:], hph.touchMap[:])
copy(s.AfterMap[:], hph.afterMap[:])
return s.Encode(buf)
}
// buf expected to be encoded hph state. Decode state and set up hph to that state.
func (hph *HexPatriciaHashed) SetState(buf []byte) error {
if hph.activeRows != 0 {
return fmt.Errorf("has active rows, could not reset state")
}
var s state
if err := s.Decode(buf); err != nil {
return err
}
hph.Reset()
if err := hph.root.decodeBytes(s.Root); err != nil {
return err
}
hph.currentKeyLen = int(s.CurrentKeyLen)
hph.rootChecked = s.RootChecked
hph.rootTouched = s.RootTouched
hph.rootPresent = s.RootPresent
copy(hph.currentKey[:], s.CurrentKey[:])
copy(hph.depths[:], s.Depths[:])
copy(hph.branchBefore[:], s.BranchBefore[:])
copy(hph.touchMap[:], s.TouchMap[:])
copy(hph.afterMap[:], s.AfterMap[:])
return nil
}
func bytesToUint64(buf []byte) (x uint64) {
for i, b := range buf {
x = x<<8 + uint64(b)
if i == 7 {
return
}
}
return
}
func hexToCompact(key []byte) []byte {
zeroByte, keyPos, keyLen := makeCompactZeroByte(key)
bufLen := keyLen/2 + 1 // always > 0
buf := make([]byte, bufLen)
buf[0] = zeroByte
return decodeKey(key[keyPos:], buf)
}
func makeCompactZeroByte(key []byte) (compactZeroByte byte, keyPos, keyLen int) {
keyLen = len(key)
if hasTerm(key) {
keyLen--
compactZeroByte = 0x20
}
var firstNibble byte
if len(key) > 0 {
firstNibble = key[0]
}
if keyLen&1 == 1 {
compactZeroByte |= 0x10 | firstNibble // Odd: (1<<4) + first nibble
keyPos++
}
return
}
func decodeKey(key, buf []byte) []byte {
keyLen := len(key)
if hasTerm(key) {
keyLen--
}
for keyIndex, bufIndex := 0, 1; keyIndex < keyLen; keyIndex, bufIndex = keyIndex+2, bufIndex+1 {
if keyIndex == keyLen-1 {
buf[bufIndex] = buf[bufIndex] & 0x0f
} else {
buf[bufIndex] = key[keyIndex+1]
}
buf[bufIndex] |= key[keyIndex] << 4
}
return buf
}
func CompactedKeyToHex(compact []byte) []byte {
if len(compact) == 0 {
return compact
}
base := keybytesToHexNibbles(compact)
// delete terminator flag
if base[0] < 2 {
base = base[:len(base)-1]
}
// apply odd flag
chop := 2 - base[0]&1
return base[chop:]
}
func keybytesToHexNibbles(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
nibbles[l-1] = 16
return nibbles
}
// hasTerm returns whether a hex key has the terminator flag.
func hasTerm(s []byte) bool {
return len(s) > 0 && s[len(s)-1] == 16
}
func commonPrefixLen(b1, b2 []byte) int {
var i int
for i = 0; i < len(b1) && i < len(b2); i++ {
if b1[i] != b2[i] {
break
}
}
return i
}
func (hph *HexPatriciaHashed) ProcessUpdates(plainKeys, hashedKeys [][]byte, updates []Update) (rootHash []byte, branchNodeUpdates map[string]BranchData, err error) {
branchNodeUpdates = make(map[string]BranchData)
for i, plainKey := range plainKeys {
hashedKey := hashedKeys[i]
if hph.trace {
fmt.Printf("plainKey=[%x], hashedKey=[%x], currentKey=[%x]\n", plainKey, hashedKey, hph.currentKey[:hph.currentKeyLen])
}
// Keep folding until the currentKey is the prefix of the key we modify
for hph.needFolding(hashedKey) {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, nil, fmt.Errorf("fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
// Now unfold until we step on an empty cell
for unfolding := hph.needUnfolding(hashedKey); unfolding > 0; unfolding = hph.needUnfolding(hashedKey) {
if err := hph.unfold(hashedKey, unfolding); err != nil {
return nil, nil, fmt.Errorf("unfold: %w", err)
}
}
update := updates[i]
// Update the cell
if update.Flags == DELETE_UPDATE {
hph.deleteCell(hashedKey)
if hph.trace {
fmt.Printf("key %x deleted\n", plainKey)
}
} else {
cell := hph.updateCell(plainKey, hashedKey)
if hph.trace {
fmt.Printf("accountFn updated key %x =>", plainKey)
}
if update.Flags&BALANCE_UPDATE != 0 {
if hph.trace {
fmt.Printf(" balance=%d", update.Balance.Uint64())
}
cell.Balance.Set(&update.Balance)
}
if update.Flags&NONCE_UPDATE != 0 {
if hph.trace {
fmt.Printf(" nonce=%d", update.Nonce)
}
cell.Nonce = update.Nonce
}
if update.Flags&CODE_UPDATE != 0 {
if hph.trace {
fmt.Printf(" codeHash=%x", update.CodeHashOrStorage)
}
copy(cell.CodeHash[:], update.CodeHashOrStorage[:])
}
if hph.trace {
fmt.Printf("\n")
}
if update.Flags&STORAGE_UPDATE != 0 {
cell.setStorage(update.CodeHashOrStorage[:update.ValLength])
if hph.trace {
fmt.Printf("\rstorageFn filled key %x => %x\n", plainKey, update.CodeHashOrStorage[:update.ValLength])
}
}
}
}
// Folding everything up to the root
for hph.activeRows > 0 {
if branchData, updateKey, err := hph.fold(); err != nil {
return nil, nil, fmt.Errorf("final fold: %w", err)
} else if branchData != nil {
branchNodeUpdates[string(updateKey)] = branchData
}
}
rootHash, err = hph.RootHash()
if err != nil {
return nil, branchNodeUpdates, fmt.Errorf("root hash evaluation failed: %w", err)
}
return rootHash, branchNodeUpdates, nil
}
// nolint
// Hashes provided key and expands resulting hash into nibbles (each byte split into two nibbles by 4 bits)
func (hph *HexPatriciaHashed) hashAndNibblizeKey(key []byte) []byte {
hashedKey := make([]byte, length.Hash)
hph.keccak.Reset()
hph.keccak.Write(key[:length.Addr])
copy(hashedKey[:length.Hash], hph.keccak.Sum(nil))
if len(key[length.Addr:]) > 0 {
hashedKey = append(hashedKey, make([]byte, length.Hash)...)
hph.keccak.Reset()
hph.keccak.Write(key[length.Addr:])
copy(hashedKey[length.Hash:], hph.keccak.Sum(nil))
}
nibblized := make([]byte, len(hashedKey)*2)
for i, b := range hashedKey {
nibblized[i*2] = (b >> 4) & 0xf
nibblized[i*2+1] = b & 0xf
}
return nibblized
}
type UpdateFlags uint8
const (
CODE_UPDATE UpdateFlags = 1
DELETE_UPDATE UpdateFlags = 2
BALANCE_UPDATE UpdateFlags = 4
NONCE_UPDATE UpdateFlags = 8
STORAGE_UPDATE UpdateFlags = 16
)
func (uf UpdateFlags) String() string {
var sb strings.Builder
if uf == DELETE_UPDATE {
sb.WriteString("Delete")
} else {
if uf&BALANCE_UPDATE != 0 {
sb.WriteString("+Balance")
}
if uf&NONCE_UPDATE != 0 {
sb.WriteString("+Nonce")
}
if uf&CODE_UPDATE != 0 {
sb.WriteString("+Code")
}
if uf&STORAGE_UPDATE != 0 {
sb.WriteString("+Storage")
}
}
return sb.String()
}
type Update struct {
Flags UpdateFlags
Balance uint256.Int
Nonce uint64
CodeHashOrStorage [length.Hash]byte
ValLength int
}
func (u *Update) DecodeForStorage(enc []byte) {
u.Nonce = 0
u.Balance.Clear()
copy(u.CodeHashOrStorage[:], EmptyCodeHash)
pos := 0
nonceBytes := int(enc[pos])
pos++
if nonceBytes > 0 {
u.Nonce = bytesToUint64(enc[pos : pos+nonceBytes])
pos += nonceBytes
}
balanceBytes := int(enc[pos])
pos++
if balanceBytes > 0 {
u.Balance.SetBytes(enc[pos : pos+balanceBytes])
pos += balanceBytes
}
codeHashBytes := int(enc[pos])
pos++
if codeHashBytes > 0 {
copy(u.CodeHashOrStorage[:], enc[pos:pos+codeHashBytes])
}
}
func (u *Update) Encode(buf []byte, numBuf []byte) []byte {
buf = append(buf, byte(u.Flags))
if u.Flags&BALANCE_UPDATE != 0 {
buf = append(buf, byte(u.Balance.ByteLen()))
buf = append(buf, u.Balance.Bytes()...)
}
if u.Flags&NONCE_UPDATE != 0 {
n := binary.PutUvarint(numBuf, u.Nonce)
buf = append(buf, numBuf[:n]...)
}
if u.Flags&CODE_UPDATE != 0 {
buf = append(buf, u.CodeHashOrStorage[:]...)
}
if u.Flags&STORAGE_UPDATE != 0 {
n := binary.PutUvarint(numBuf, uint64(u.ValLength))
buf = append(buf, numBuf[:n]...)
if u.ValLength > 0 {
buf = append(buf, u.CodeHashOrStorage[:u.ValLength]...)
}
}
return buf
}
func (u *Update) Decode(buf []byte, pos int) (int, error) {
if len(buf) < pos+1 {
return 0, fmt.Errorf("decode Update: buffer too small for flags")
}
u.Flags = UpdateFlags(buf[pos])
pos++
if u.Flags&BALANCE_UPDATE != 0 {
if len(buf) < pos+1 {
return 0, fmt.Errorf("decode Update: buffer too small for balance len")
}
balanceLen := int(buf[pos])
pos++
if len(buf) < pos+balanceLen {
return 0, fmt.Errorf("decode Update: buffer too small for balance")
}
u.Balance.SetBytes(buf[pos : pos+balanceLen])
pos += balanceLen
}
if u.Flags&NONCE_UPDATE != 0 {
var n int
u.Nonce, n = binary.Uvarint(buf[pos:])
if n == 0 {
return 0, fmt.Errorf("decode Update: buffer too small for nonce")
}
if n < 0 {
return 0, fmt.Errorf("decode Update: nonce overflow")
}
pos += n
}
if u.Flags&CODE_UPDATE != 0 {
if len(buf) < pos+32 {
return 0, fmt.Errorf("decode Update: buffer too small for codeHash")
}
copy(u.CodeHashOrStorage[:], buf[pos:pos+32])
pos += 32
}
if u.Flags&STORAGE_UPDATE != 0 {
l, n := binary.Uvarint(buf[pos:])
if n == 0 {
return 0, fmt.Errorf("decode Update: buffer too small for storage len")
}
if n < 0 {
return 0, fmt.Errorf("decode Update: storage lee overflow")
}
pos += n
if len(buf) < pos+int(l) {
return 0, fmt.Errorf("decode Update: buffer too small for storage")
}
u.ValLength = int(l)
copy(u.CodeHashOrStorage[:], buf[pos:pos+int(l)])
pos += int(l)
}
return pos, nil
}
func (u *Update) String() string {
var sb strings.Builder
sb.WriteString(fmt.Sprintf("Flags: [%s]", u.Flags))
if u.Flags&BALANCE_UPDATE != 0 {
sb.WriteString(fmt.Sprintf(", Balance: [%d]", &u.Balance))
}
if u.Flags&NONCE_UPDATE != 0 {
sb.WriteString(fmt.Sprintf(", Nonce: [%d]", u.Nonce))
}
if u.Flags&CODE_UPDATE != 0 {
sb.WriteString(fmt.Sprintf(", CodeHash: [%x]", u.CodeHashOrStorage))
}
if u.Flags&STORAGE_UPDATE != 0 {
sb.WriteString(fmt.Sprintf(", Storage: [%x]", u.CodeHashOrStorage[:u.ValLength]))
}
return sb.String()
}