erigon-pulse/trie/structural_test.go
ledgerwatch 7ab10c85af
Separate Collector pattern out of ETL, hash collector for rebuilding Intermediate Hashes (#597)
* Introduce hashCollector

* Add HashCollector to SubTrieLoader

* Fix linter

* Reset hashed state

* Not to regenerate the hashed state

* Not to delete state

* Fix linter

* Print expected hash in the beginning

* Simplify

* Remove initialTrie

* Use etl to buffer intermediate hashes

* Copy values, not insert empty key

* Compress instead of decompress

* Enhance file buffer logging, fix linter

* Fix compile errors

* Fix log

* Fix logging

* Exclude zero key again

* Add rewind

* Restrict timestamps

* Fix

* Fix formatting

* Incorporate separation

* Extract identityLoadFunction

* Fix formatting
2020-05-31 13:23:34 +01:00

247 lines
8.6 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
// Experimental code for separating data and structural information
import (
"bytes"
"encoding/binary"
"fmt"
"sort"
"testing"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/trie/rlphacks"
)
func TestV2HashBuilding(t *testing.T) {
var keys []string
for b := uint32(0); b < 100000; b++ {
var preimage [4]byte
binary.BigEndian.PutUint32(preimage[:], b)
key := crypto.Keccak256(preimage[:])[:8]
keys = append(keys, string(key))
}
sort.Strings(keys)
for i, key := range keys {
if i > 0 && keys[i-1] == key {
fmt.Printf("Duplicate!\n")
}
}
tr := New(common.Hash{})
valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
valueShort := []byte("VAL")
for i, key := range keys {
if i%2 == 0 {
tr.Update([]byte(key), valueNode(valueLong))
} else {
tr.Update([]byte(key), valueNode(valueShort))
}
}
trieHash := tr.Hash()
hb := NewHashBuilder(false)
var succ bytes.Buffer
var curr bytes.Buffer
var valueTape bytes.Buffer
var groups []uint16
for i, key := range keys {
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
keyBytes := []byte(key)
for _, b := range keyBytes {
succ.WriteByte(b / 16)
succ.WriteByte(b % 16)
}
succ.WriteByte(16)
if curr.Len() > 0 {
var err error
groups, err = GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false)
if err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
}
valueTape.Reset()
if i%2 == 0 {
valueTape.Write(valueLong)
} else {
valueTape.Write(valueShort)
}
}
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
if _, err := GenStructStep(func(_ []byte) bool { return false }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
builtHash := hb.rootHash()
if trieHash != builtHash {
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
}
}
func TestV2Resolution(t *testing.T) {
var keys []string
for b := uint32(0); b < 100000; b++ {
var preimage [4]byte
binary.BigEndian.PutUint32(preimage[:], b)
key := crypto.Keccak256(preimage[:])[:8]
keys = append(keys, string(key))
}
sort.Strings(keys)
tr := New(common.Hash{})
value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
for _, key := range keys {
tr.Update([]byte(key), valueNode(value))
}
trieHash := tr.Hash()
// Choose some keys to be resolved
var rl RetainList
// First, existing keys
for i := 0; i < 1000; i += 200 {
rl.AddKey([]byte(keys[i]))
}
// Next, some non-exsiting keys
for i := 0; i < 1000; i++ {
rl.AddKey(crypto.Keccak256([]byte(keys[i]))[:8])
}
hb := NewHashBuilder(false)
var succ bytes.Buffer
var curr bytes.Buffer
var valueTape bytes.Buffer
var groups []uint16
for _, key := range keys {
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
keyBytes := []byte(key)
for _, b := range keyBytes {
succ.WriteByte(b / 16)
succ.WriteByte(b % 16)
}
succ.WriteByte(16)
if curr.Len() > 0 {
var err error
groups, err = GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false)
if err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
}
valueTape.Reset()
valueTape.Write(value)
}
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
if _, err := GenStructStep(rl.Retain, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueTape.Bytes())}, groups, false); err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
tr1 := New(common.Hash{})
tr1.root = hb.root()
builtHash := hb.rootHash()
if trieHash != builtHash {
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
}
// Check the availability of the resolved keys
for _, hex := range rl.hexes {
key := hexToKeybytes(hex)
_, found := tr1.Get(key)
if !found {
t.Errorf("Key %x was not resolved", hex)
}
}
}
// In this test, we try to combine both accounts and their storage items in the single
// hash builder by tricking the GenStructStep slightly.
// For storage items, we will be using the keys which are concatenation of the contract address hash,
// incarnation encoding, and the storage location hash.
// If we just allow it to be processed natually, then at the end of the processing of all storage
// items, we would have entension node which branches off at some point, but includes incarnation encoding
// in it, which we do not want. To cut it off, we will use the "trick". When we give the last
// storage item to the GenStructStep, instead of setting `succ` to the empty slice, indicating that
// nothing follows, we will set `succ` to a key which is the concatenation of the address hash,
// incarnation encoding, except that the last nibble of the incoding is arbitrarily modified
// This will cause the correct extension node to form.
// In order to prevent the branch node on top of the extension node, we will need to manipulate
// the `groups` array and truncate it to the level of the accounts
func TestEmbeddedStorage(t *testing.T) {
var accountAddress = common.Address{3, 4, 5, 6}
addrHash := crypto.Keccak256(accountAddress[:])
incarnation := make([]byte, 8)
binary.BigEndian.PutUint64(incarnation, ^uint64(2))
var location1 = common.Hash{1}
locationKey1 := append(append([]byte{}, addrHash...), crypto.Keccak256(location1[:])...)
var location2 = common.Hash{2}
locationKey2 := append(append([]byte{}, addrHash...), crypto.Keccak256(location2[:])...)
var location3 = common.Hash{3}
locationKey3 := append(append([]byte{}, addrHash...), crypto.Keccak256(location3[:])...)
var keys = []string{string(locationKey1), string(locationKey2), string(locationKey3)}
sort.Strings(keys)
tr := New(common.Hash{})
valueShort := []byte("VAL")
for _, key := range keys {
tr.Update([]byte(key)[common.HashLength:], valueNode(valueShort))
}
trieHash := tr.Hash()
hb := NewHashBuilder(true)
var succ bytes.Buffer
var curr bytes.Buffer
var groups []uint16
var err error
for _, key := range keys {
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
keyBytes := []byte(key)
for _, b := range keyBytes {
succ.WriteByte(b / 16)
succ.WriteByte(b % 16)
}
succ.WriteByte(16)
if curr.Len() > 0 {
groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false)
if err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
}
}
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
// Produce the key which is specially modified version of `curr` (only different in the last nibble)
cutoff := 2 * common.HashLength
succ.Write(curr.Bytes()[:cutoff-1])
succ.WriteByte(curr.Bytes()[cutoff-1] + 1)
if groups, err = GenStructStep(func(_ []byte) bool { return true }, curr.Bytes(), succ.Bytes(), hb, nil /* hashCollector */, &GenStructStepLeafData{rlphacks.RlpSerializableBytes(valueShort)}, groups, false); err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
builtHash := hb.rootHash()
if trieHash != builtHash {
fmt.Printf("Trie built: %s\n", hb.root().fstring(""))
fmt.Printf("Trie expected: %s\n", tr.root.fstring(""))
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
}
fmt.Printf("groups: %d\n", len(groups))
}