erigon-pulse/trie/structural_test.go
ledgerwatch 244d70fb9c
Further fixes for the no-mod-root (#186)
* Further fixes

* Repace 1000 with a symbol
2019-11-21 15:56:39 +00:00

304 lines
9.6 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
// Experimental code for separating data and structural information
import (
"bytes"
"encoding/binary"
"fmt"
"math/big"
"sort"
"testing"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/crypto"
)
func TestV2HashBuilding(t *testing.T) {
var keys []string
for b := uint32(0); b < 100000; b++ {
var preimage [4]byte
binary.BigEndian.PutUint32(preimage[:], b)
key := crypto.Keccak256(preimage[:])[:8]
keys = append(keys, string(key))
}
sort.Strings(keys)
for i, key := range keys {
if i > 0 && keys[i-1] == key {
fmt.Printf("Duplicate!\n")
}
}
tr := New(common.Hash{})
valueLong := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
valueShort := []byte("VAL")
for i, key := range keys {
if i%2 == 0 {
tr.Update([]byte(key), valueNode(valueLong), 0)
} else {
tr.Update([]byte(key), valueNode(valueShort), 0)
}
}
trieHash := tr.Hash()
hb := NewHashBuilder(false)
var succ bytes.Buffer
var curr OneBytesTape
var valueTape OneBytesTape
hb.SetKeyTape(&curr)
hb.SetValueTape(NewRlpSerializableBytesTape(&valueTape))
var groups []uint16
for i, key := range keys {
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
keyBytes := []byte(key)
for _, b := range keyBytes {
succ.WriteByte(b / 16)
succ.WriteByte(b % 16)
}
succ.WriteByte(16)
if curr.Len() > 0 {
var err error
groups, err = GenStructStep(0, func(_ []byte) bool { return true }, false, false, curr.Bytes(), succ.Bytes(), hb, groups)
if err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
}
valueTape.Buffer.Reset()
if i%2 == 0 {
valueTape.Buffer.Write(valueLong)
} else {
valueTape.Buffer.Write(valueShort)
}
}
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
if _, err := GenStructStep(0, func(_ []byte) bool { return true }, false, false, curr.Bytes(), succ.Bytes(), hb, groups); err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
builtHash := hb.rootHash()
if trieHash != builtHash {
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
}
}
func TestV2Resolution(t *testing.T) {
var keys []string
for b := uint32(0); b < 100000; b++ {
var preimage [4]byte
binary.BigEndian.PutUint32(preimage[:], b)
key := crypto.Keccak256(preimage[:])[:8]
keys = append(keys, string(key))
}
sort.Strings(keys)
tr := New(common.Hash{})
value := []byte("VALUE123985903485903489043859043859043859048590485904385903485940385439058934058439058439058439058940385904358904385438809348908345")
for _, key := range keys {
tr.Update([]byte(key), valueNode(value), 0)
}
trieHash := tr.Hash()
// Choose some keys to be resolved
var rs ResolveSet
// First, existing keys
for i := 0; i < 1000; i += 200 {
rs.AddKey([]byte(keys[i]))
}
// Next, some non-exsiting keys
for i := 0; i < 1000; i++ {
rs.AddKey(crypto.Keccak256([]byte(keys[i]))[:8])
}
hb := NewHashBuilder(false)
var succ bytes.Buffer
var curr OneBytesTape
var valueTape OneBytesTape
hb.SetKeyTape(&curr)
hb.SetValueTape(NewRlpSerializableBytesTape(&valueTape))
var groups []uint16
for _, key := range keys {
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
keyBytes := []byte(key)
for _, b := range keyBytes {
succ.WriteByte(b / 16)
succ.WriteByte(b % 16)
}
succ.WriteByte(16)
if curr.Len() > 0 {
var err error
groups, err = GenStructStep(0, rs.HashOnly, false, false, curr.Bytes(), succ.Bytes(), hb, groups)
if err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
}
valueTape.Buffer.Reset()
valueTape.Buffer.Write(value)
}
curr.Reset()
curr.Write(succ.Bytes())
succ.Reset()
if _, err := GenStructStep(0, rs.HashOnly, false, false, curr.Bytes(), succ.Bytes(), hb, groups); err != nil {
t.Errorf("Could not execute step of structGen algorithm: %v", err)
}
tr1 := New(common.Hash{})
tr1.root = hb.root()
builtHash := hb.rootHash()
if trieHash != builtHash {
t.Errorf("Expected hash %x, got %x", trieHash, builtHash)
}
// Check the availability of the resolved keys
for _, hex := range rs.hexes {
key := hexToKeybytes(hex)
_, found := tr1.Get(key)
if !found {
t.Errorf("Key %x was not resolved", hex)
}
}
}
var streamTests = []struct {
aHexKeys []string
aBalances []int64
sHexKeys []string
sHexValues []string
rsHex []string
hexesExpected []string
aBalancesExpected []int64
sValuesExpected []string
hashesExpected []string
}{
{
aHexKeys: []string{"0x00000000"},
aBalances: []int64{13},
sHexKeys: []string{},
sHexValues: []string{},
rsHex: []string{},
hexesExpected: []string{"0x000000000000000010"},
aBalancesExpected: []int64{13},
sValuesExpected: []string{},
hashesExpected: []string{},
},
{
aHexKeys: []string{"0x0000000000000000"},
aBalances: []int64{13},
sHexKeys: []string{"0x00000000000000000100000000000001", "0x00000000000000000020000000000002"},
sHexValues: []string{"0x01", "0x02"},
rsHex: []string{},
hexesExpected: []string{"0x0000000000000000000000000000000010"},
aBalancesExpected: []int64{13},
sValuesExpected: []string{},
hashesExpected: []string{},
},
{
aHexKeys: []string{"0x0000000000000000", "0x000f000000000000"},
aBalances: []int64{13, 567},
sHexKeys: []string{"0x00000000000000000100000000000001", "0x00000000000000000020000000000002"},
sHexValues: []string{"0x01", "0x02"},
rsHex: []string{"0x0000000000000000", "0x000f000000000000"},
hexesExpected: []string{"0x0000000000000000000000000000000010", "0000000f00000000000000000000000010"},
aBalancesExpected: []int64{13, 567},
sValuesExpected: []string{},
hashesExpected: []string{},
},
}
func TestToStream(t *testing.T) {
trace := true
for tn, streamTest := range streamTests {
if trace {
fmt.Printf("Test number %d\n", tn)
}
tr := New(common.Hash{})
for i, balance := range streamTest.aBalances {
account := &accounts.Account{Initialised: true, Balance: *big.NewInt(balance), CodeHash: emptyState}
tr.UpdateAccount(common.FromHex(streamTest.aHexKeys[i]), account)
}
for i, sHexKey := range streamTest.sHexKeys {
tr.Update(common.FromHex(sHexKey), common.FromHex(streamTest.sHexValues[i]), 0)
}
// Important to do the hash calculation here, so that the account nodes are updated
// with the correct storage root values
trieHash := tr.Hash()
rs := NewResolveSet(0)
for _, rsItem := range streamTest.rsHex {
rs.AddKey(common.FromHex(rsItem))
}
s := ToStream(tr, rs, trace)
if len(s.hexes) != len(streamTest.hexesExpected) {
t.Errorf("length of hexes is %d, expected %d", len(s.hexes), len(streamTest.hexesExpected))
}
for i, hex := range s.hexes {
if i < len(streamTest.hexesExpected) {
hexExpected := common.FromHex(streamTest.hexesExpected[i])
if !bytes.Equal(hex, hexExpected) {
t.Errorf("hex[%d] = %x, expected %x", i, hex, hexExpected)
}
}
}
if len(s.aValues) != len(streamTest.aBalancesExpected) {
t.Errorf("length of aValues is %d, expected %d", len(s.aValues), len(streamTest.aBalancesExpected))
}
for i, aValue := range s.aValues {
if i < len(streamTest.aBalancesExpected) {
balanceExpected := streamTest.aBalancesExpected[i]
if aValue.Balance.Int64() != balanceExpected {
t.Errorf("balance[%d] = %d, expected %d", i, aValue.Balance.Int64(), balanceExpected)
}
}
}
if len(s.sValues) != len(streamTest.sValuesExpected) {
t.Errorf("length of sValues is %d, expected %d", len(s.sValues), len(streamTest.sValuesExpected))
}
for i, sValue := range s.sValues {
if i < len(streamTest.sValuesExpected) {
sValueExpected := common.FromHex(streamTest.sValuesExpected[i])
if !bytes.Equal(sValue, sValueExpected) {
t.Errorf("sValue[%d] = %x, expected %x", i, sValue, sValueExpected)
}
}
}
if len(s.hashes) != len(streamTest.hashesExpected) {
t.Errorf("length of hashes is %d, expected %d", len(s.hashes), len(streamTest.hashesExpected))
}
for i, hash := range s.hashes {
if i < len(streamTest.hashesExpected) {
hashExpected := common.HexToHash(streamTest.hashesExpected[i])
if hash != hashExpected {
t.Errorf("hash[%d] = %x, expected %x", i, hash, hashExpected)
}
}
}
// Check that the hash of the stream is equal to the hash of the trie
streamHash, err := StreamHash(s, 8, trace)
if trace {
fmt.Printf("want:\n%s\n", tr.root.fstring(""))
}
if err != nil {
t.Errorf("unable to compute hash of the stream: %v", err)
}
if streamHash != trieHash {
t.Errorf("stream hash %x != trie hash %x", streamHash, trieHash)
}
}
}