erigon-pulse/core/state/database_test.go
2019-12-03 16:27:57 +01:00

484 lines
16 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state_test
import (
"context"
"math/big"
"testing"
"github.com/ledgerwatch/turbo-geth/accounts/abi/bind"
"github.com/ledgerwatch/turbo-geth/accounts/abi/bind/backends"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/consensus/ethash"
"github.com/ledgerwatch/turbo-geth/core"
"github.com/ledgerwatch/turbo-geth/core/state"
"github.com/ledgerwatch/turbo-geth/core/state/contracts"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/core/vm"
"github.com/ledgerwatch/turbo-geth/crypto"
"github.com/ledgerwatch/turbo-geth/ethdb"
"github.com/ledgerwatch/turbo-geth/params"
)
// Create revival problem
func TestCreate2Revive(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
genesisDb = db.MemCopy()
signer = types.HomesteadSigner{}
)
engine := ethash.NewFaker()
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
if err != nil {
t.Fatal(err)
}
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var revive *contracts.Revive
// Change this address whenever you make any changes in the code of the revive contract in
// contracts/revive.sol
var create2address = common.HexToAddress("e70fd65144383e1189bd710b1e23b61e26315ff4")
// There are 4 blocks
// In the first block, we deploy the "factory" contract Revive, which can create children contracts via CREATE2 opcode
// In the second block, we create the first child contract
// In the third block, we cause the first child contract to selfdestruct
// In the forth block, we create the second child contract, and we expect it to have a "clean slate" of storage,
// i.e. without any storage items that "inherited" from the first child contract by mistake
ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1))
blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, genesisDb, 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, revive, err = contracts.DeployRevive(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = revive.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 2:
tx, err = types.SignTx(types.NewTransaction(block.TxNonce(address), create2address, big.NewInt(0), 1000000, new(big.Int), nil), signer, key)
if err != nil {
t.Fatal(err)
}
err = contractBackend.SendTransaction(ctx, tx)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 3:
tx, err = revive.Deploy(transactOpts, big.NewInt(0))
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
})
st, _, _ := blockchain.State()
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// BLOCK 2
if _, err = blockchain.InsertChain(types.Blocks{blocks[1]}); err != nil {
t.Fatal(err)
}
var it *contracts.ReviveDeployEventIterator
it, err = revive.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st, _, _ = blockchain.State()
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 2", create2address.String())
}
// We expect number 0x42 in the position [2], because it is the block number 2
check2 := st.GetState(create2address, common.BigToHash(big.NewInt(2)))
if check2 != common.HexToHash("0x42") {
t.Errorf("expected 0x42 in position 2, got: %x", check2)
}
// BLOCK 3
if _, err = blockchain.InsertChain(types.Blocks{blocks[2]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if st.Exist(create2address) {
t.Error("expected create2address to be self-destructed at the block 3", create2address.String())
}
// BLOCK 4
if _, err = blockchain.InsertChain(types.Blocks{blocks[3]}); err != nil {
t.Fatal(err)
}
it, err = revive.FilterDeployEvent(nil)
if err != nil {
t.Fatal(err)
}
if !it.Next() {
t.Error("Expected DeployEvent")
}
if it.Event.D != create2address {
t.Errorf("Wrong create2address: %x, expected %x", it.Event.D, create2address)
}
st, _, _ = blockchain.State()
if !st.Exist(create2address) {
t.Error("expected create2address to exist at the block 2", create2address.String())
}
// We expect number 0x42 in the position [4], because it is the block number 4
check4 := st.GetState(create2address, common.BigToHash(big.NewInt(4)))
if check4 != common.HexToHash("0x42") {
t.Errorf("expected 0x42 in position 4, got: %x", check4)
}
// We expect number 0x0 in the position [2], because it is the block number 4
check2 = st.GetState(create2address, common.BigToHash(big.NewInt(2)))
if check2 != common.HexToHash("0x0") {
t.Errorf("expected 0x0 in position 2, got: %x", check2)
}
}
func TestReorgOverSelfDestruct(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
},
}
genesis = gspec.MustCommit(db)
)
engine := ethash.NewFaker()
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
if err != nil {
t.Fatal(err)
}
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
var selfDestruct *contracts.Selfdestruct
ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1))
// Here we generate 3 blocks, two of which (the one with "Change" invocation and "Destruct" invocation will be reverted during the reorg)
blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, db.MemCopy(), 3, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, selfDestruct, err = contracts.DeploySelfdestruct(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 1:
tx, err = selfDestruct.Change(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
case 2:
tx, err = selfDestruct.Destruct(transactOpts)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
})
// Create a longer chain, with 4 blocks (with higher total difficulty) that reverts the change of stroage self-destruction of the contract
contractBackendLonger := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOptsLonger := bind.NewKeyedTransactor(key)
transactOptsLonger.GasLimit = 1000000
longerBlocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, db.MemCopy(), 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
_, tx, _, err = contracts.DeploySelfdestruct(transactOptsLonger, contractBackendLonger)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackendLonger.Commit()
})
st, _, _ := blockchain.State()
if !st.Exist(address) {
t.Error("expected account to exist")
}
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist before block 0", contractAddress.String())
}
// BLOCK 1
if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// Remember value of field "x" (storage item 0) after the first block, to check after rewinding
correctValueX := st.GetState(contractAddress, common.Hash{})
// BLOCKS 2 + 3
if _, err = blockchain.InsertChain(types.Blocks{blocks[1], blocks[2]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if st.Exist(contractAddress) {
t.Error("expected contractAddress to not exist at the block 3", contractAddress.String())
}
// REORG of block 2 and 3, and insert new (empty) BLOCK 2, 3, and 4
if _, err = blockchain.InsertChain(types.Blocks{longerBlocks[1], longerBlocks[2], longerBlocks[3]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 4", contractAddress.String())
}
// Reload blockchain from the database
blockchain, err = core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
if err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
valueX := st.GetState(contractAddress, common.Hash{})
if valueX != correctValueX {
t.Fatalf("storage value has changed after reorg: %x, expected %x", valueX, correctValueX)
}
}
func TestCreateOnExistingStorage(t *testing.T) {
// Configure and generate a sample block chain
var (
db = ethdb.NewMemDatabase()
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
address = crypto.PubkeyToAddress(key.PublicKey)
// Address of the contract that will be deployed
contractAddr = common.HexToAddress("0x3a220f351252089d385b29beca14e27f204c296a")
funds = big.NewInt(1000000000)
gspec = &core.Genesis{
Config: &params.ChainConfig{
ChainID: big.NewInt(1),
HomesteadBlock: new(big.Int),
EIP150Block: new(big.Int),
EIP155Block: new(big.Int),
EIP158Block: big.NewInt(1),
ByzantiumBlock: big.NewInt(1),
ConstantinopleBlock: big.NewInt(1),
},
Alloc: core.GenesisAlloc{
address: {Balance: funds},
// Pre-existing storage item in an account without code
contractAddr: {Balance: funds, Storage: map[common.Hash]common.Hash{{}: common.HexToHash("0x42")}},
},
}
genesis = gspec.MustCommit(db)
genesisDb = db.MemCopy()
)
engine := ethash.NewFaker()
blockchain, err := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
if err != nil {
t.Fatal(err)
}
blockchain.EnableReceipts(true)
contractBackend := backends.NewSimulatedBackendWithConfig(gspec.Alloc, gspec.Config, gspec.GasLimit)
transactOpts := bind.NewKeyedTransactor(key)
transactOpts.GasLimit = 1000000
var contractAddress common.Address
// There is one block, and it ends up deploying Revive contract (could be any other contract, it does not really matter)
// On the address contractAddr, where there is a storage item in the genesis, but no contract code
// We expect the pre-existing storage items to be removed by the deployment
ctx := blockchain.WithContext(context.Background(), big.NewInt(genesis.Number().Int64()+1))
blocks, _ := core.GenerateChain(ctx, gspec.Config, genesis, engine, genesisDb, 4, func(i int, block *core.BlockGen) {
var tx *types.Transaction
switch i {
case 0:
contractAddress, tx, _, err = contracts.DeployRevive(transactOpts, contractBackend)
if err != nil {
t.Fatal(err)
}
block.AddTx(tx)
}
contractBackend.Commit()
})
st, _, _ := blockchain.State()
if !st.Exist(address) {
t.Error("expected account to exist")
}
if contractAddress != contractAddr {
t.Errorf("expected contract address to be %x, got: %x", contractAddr, contractAddress)
}
// BLOCK 1
if _, err = blockchain.InsertChain(types.Blocks{blocks[0]}); err != nil {
t.Fatal(err)
}
st, _, _ = blockchain.State()
if !st.Exist(contractAddress) {
t.Error("expected contractAddress to exist at the block 1", contractAddress.String())
}
// We expect number 0x42 in the position [2], because it is the block number 2
check0 := st.GetState(contractAddress, common.BigToHash(big.NewInt(0)))
if check0 != common.HexToHash("0x0") {
t.Errorf("expected 0x00 in position 0, got: %x", check0)
}
}
func TestReproduceCrash(t *testing.T) {
// This example was taken from Ropsten contract that used to cause a crash
// it is created in the block 598915 and then there are 3 transactions modifying
// its storage in the same block:
// 1. Setting storageKey 1 to a non-zero value
// 2. Setting storageKey 2 to a non-zero value
// 3. Setting both storageKey1 and storageKey2 to zero values
value0 := common.Hash{}
contract := common.HexToAddress("0x71dd1027069078091B3ca48093B00E4735B20624")
storageKey1 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132541")
value1 := common.HexToHash("0x016345785d8a0000")
storageKey2 := common.HexToHash("0x0e4c0e7175f9d22279a4f63ff74f7fa28b7a954a6454debaa62ce43dd9132542")
value2 := common.HexToHash("0x58c00a51")
db := ethdb.NewMemDatabase()
tds, err := state.NewTrieDbState(common.Hash{}, db, 0)
if err != nil {
t.Errorf("could not create TrieDbState: %v", err)
}
tsw := tds.TrieStateWriter()
intraBlockState := state.New(tds)
ctx := context.Background()
// Start the 1st transaction
tds.StartNewBuffer()
intraBlockState.CreateAccount(contract, true)
if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 2nd transaction
tds.StartNewBuffer()
intraBlockState.SetState(contract, storageKey1, value1)
if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 3rd transaction
tds.StartNewBuffer()
intraBlockState.AddBalance(contract, big.NewInt(1000000000))
intraBlockState.SetState(contract, storageKey2, value2)
if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
// Start the 4th transaction - clearing both storage cells
tds.StartNewBuffer()
intraBlockState.SubBalance(contract, big.NewInt(1000000000))
intraBlockState.SetState(contract, storageKey1, value0)
intraBlockState.SetState(contract, storageKey2, value0)
if err = intraBlockState.FinalizeTx(ctx, tsw); err != nil {
t.Errorf("error finalising 1st tx: %v", err)
}
if _, err = tds.ComputeTrieRoots(); err != nil {
t.Errorf("ComputeTrieRoots failed: %v", err)
}
// We expect the list of prunable entries to be empty
prunables := tds.TriePruningDebugDump()
if len(prunables) > 0 {
t.Errorf("Expected empty list of prunables, got:\n %s", prunables)
}
}