erigon-pulse/swarm/storage/chunker_test.go
Anton Evangelatov 7c9314f231 swarm: integrate OpenTracing; propagate ctx to internal APIs (#17169)
* swarm: propagate ctx, enable opentracing

* swarm/tracing: log error when tracing is misconfigured
2018-07-13 17:40:28 +02:00

465 lines
16 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package storage
import (
"bytes"
"context"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"io"
"testing"
"github.com/ethereum/go-ethereum/crypto/sha3"
)
/*
Tests TreeChunker by splitting and joining a random byte slice
*/
type test interface {
Fatalf(string, ...interface{})
Logf(string, ...interface{})
}
type chunkerTester struct {
inputs map[uint64][]byte
t test
}
// fakeChunkStore doesn't store anything, just implements the ChunkStore interface
// It can be used to inject into a hasherStore if you don't want to actually store data just do the
// hashing
type fakeChunkStore struct {
}
// Put doesn't store anything it is just here to implement ChunkStore
func (f *fakeChunkStore) Put(context.Context, *Chunk) {
}
// Gut doesn't store anything it is just here to implement ChunkStore
func (f *fakeChunkStore) Get(context.Context, Address) (*Chunk, error) {
return nil, errors.New("FakeChunkStore doesn't support Get")
}
// Close doesn't store anything it is just here to implement ChunkStore
func (f *fakeChunkStore) Close() {
}
func newTestHasherStore(chunkStore ChunkStore, hash string) *hasherStore {
return NewHasherStore(chunkStore, MakeHashFunc(hash), false)
}
func testRandomBrokenData(n int, tester *chunkerTester) {
data := io.LimitReader(rand.Reader, int64(n))
brokendata := brokenLimitReader(data, n, n/2)
buf := make([]byte, n)
_, err := brokendata.Read(buf)
if err == nil || err.Error() != "Broken reader" {
tester.t.Fatalf("Broken reader is not broken, hence broken. Returns: %v", err)
}
data = io.LimitReader(rand.Reader, int64(n))
brokendata = brokenLimitReader(data, n, n/2)
putGetter := newTestHasherStore(NewMapChunkStore(), SHA3Hash)
expectedError := fmt.Errorf("Broken reader")
addr, _, err := TreeSplit(context.TODO(), brokendata, int64(n), putGetter)
if err == nil || err.Error() != expectedError.Error() {
tester.t.Fatalf("Not receiving the correct error! Expected %v, received %v", expectedError, err)
}
tester.t.Logf(" Key = %v\n", addr)
}
func testRandomData(usePyramid bool, hash string, n int, tester *chunkerTester) Address {
if tester.inputs == nil {
tester.inputs = make(map[uint64][]byte)
}
input, found := tester.inputs[uint64(n)]
var data io.Reader
if !found {
data, input = generateRandomData(n)
tester.inputs[uint64(n)] = input
} else {
data = io.LimitReader(bytes.NewReader(input), int64(n))
}
putGetter := newTestHasherStore(NewMapChunkStore(), hash)
var addr Address
var wait func(context.Context) error
var err error
ctx := context.TODO()
if usePyramid {
addr, wait, err = PyramidSplit(ctx, data, putGetter, putGetter)
} else {
addr, wait, err = TreeSplit(ctx, data, int64(n), putGetter)
}
if err != nil {
tester.t.Fatalf(err.Error())
}
tester.t.Logf(" Key = %v\n", addr)
err = wait(ctx)
if err != nil {
tester.t.Fatalf(err.Error())
}
reader := TreeJoin(context.TODO(), addr, putGetter, 0)
output := make([]byte, n)
r, err := reader.Read(output)
if r != n || err != io.EOF {
tester.t.Fatalf("read error read: %v n = %v err = %v\n", r, n, err)
}
if input != nil {
if !bytes.Equal(output, input) {
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", input, output)
}
}
// testing partial read
for i := 1; i < n; i += 10000 {
readableLength := n - i
output := make([]byte, readableLength)
r, err := reader.ReadAt(output, int64(i))
if r != readableLength || err != io.EOF {
tester.t.Fatalf("readAt error with offset %v read: %v n = %v err = %v\n", i, r, readableLength, err)
}
if input != nil {
if !bytes.Equal(output, input[i:]) {
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", input[i:], output)
}
}
}
return addr
}
func TestSha3ForCorrectness(t *testing.T) {
tester := &chunkerTester{t: t}
size := 4096
input := make([]byte, size+8)
binary.LittleEndian.PutUint64(input[:8], uint64(size))
io.LimitReader(bytes.NewReader(input[8:]), int64(size))
rawSha3 := sha3.NewKeccak256()
rawSha3.Reset()
rawSha3.Write(input)
rawSha3Output := rawSha3.Sum(nil)
sha3FromMakeFunc := MakeHashFunc(SHA3Hash)()
sha3FromMakeFunc.ResetWithLength(input[:8])
sha3FromMakeFunc.Write(input[8:])
sha3FromMakeFuncOutput := sha3FromMakeFunc.Sum(nil)
if len(rawSha3Output) != len(sha3FromMakeFuncOutput) {
tester.t.Fatalf("Original SHA3 and abstracted Sha3 has different length %v:%v\n", len(rawSha3Output), len(sha3FromMakeFuncOutput))
}
if !bytes.Equal(rawSha3Output, sha3FromMakeFuncOutput) {
tester.t.Fatalf("Original SHA3 and abstracted Sha3 mismatch %v:%v\n", rawSha3Output, sha3FromMakeFuncOutput)
}
}
func TestDataAppend(t *testing.T) {
sizes := []int{1, 1, 1, 4095, 4096, 4097, 1, 1, 1, 123456, 2345678, 2345678}
appendSizes := []int{4095, 4096, 4097, 1, 1, 1, 8191, 8192, 8193, 9000, 3000, 5000}
tester := &chunkerTester{t: t}
for i := range sizes {
n := sizes[i]
m := appendSizes[i]
if tester.inputs == nil {
tester.inputs = make(map[uint64][]byte)
}
input, found := tester.inputs[uint64(n)]
var data io.Reader
if !found {
data, input = generateRandomData(n)
tester.inputs[uint64(n)] = input
} else {
data = io.LimitReader(bytes.NewReader(input), int64(n))
}
chunkStore := NewMapChunkStore()
putGetter := newTestHasherStore(chunkStore, SHA3Hash)
ctx := context.TODO()
addr, wait, err := PyramidSplit(ctx, data, putGetter, putGetter)
if err != nil {
tester.t.Fatalf(err.Error())
}
err = wait(ctx)
if err != nil {
tester.t.Fatalf(err.Error())
}
//create a append data stream
appendInput, found := tester.inputs[uint64(m)]
var appendData io.Reader
if !found {
appendData, appendInput = generateRandomData(m)
tester.inputs[uint64(m)] = appendInput
} else {
appendData = io.LimitReader(bytes.NewReader(appendInput), int64(m))
}
putGetter = newTestHasherStore(chunkStore, SHA3Hash)
newAddr, wait, err := PyramidAppend(ctx, addr, appendData, putGetter, putGetter)
if err != nil {
tester.t.Fatalf(err.Error())
}
err = wait(ctx)
if err != nil {
tester.t.Fatalf(err.Error())
}
reader := TreeJoin(ctx, newAddr, putGetter, 0)
newOutput := make([]byte, n+m)
r, err := reader.Read(newOutput)
if r != (n + m) {
tester.t.Fatalf("read error read: %v n = %v m = %v err = %v\n", r, n, m, err)
}
newInput := append(input, appendInput...)
if !bytes.Equal(newOutput, newInput) {
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", newInput, newOutput)
}
}
}
func TestRandomData(t *testing.T) {
// This test can validate files up to a relatively short length, as tree chunker slows down drastically.
// Validation of longer files is done by TestLocalStoreAndRetrieve in swarm package.
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 524288, 524288 + 1, 524288 + 4097, 7 * 524288, 7*524288 + 1, 7*524288 + 4097}
tester := &chunkerTester{t: t}
for _, s := range sizes {
treeChunkerKey := testRandomData(false, SHA3Hash, s, tester)
pyramidChunkerKey := testRandomData(true, SHA3Hash, s, tester)
if treeChunkerKey.String() != pyramidChunkerKey.String() {
tester.t.Fatalf("tree chunker and pyramid chunker key mismatch for size %v\n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
}
}
for _, s := range sizes {
treeChunkerKey := testRandomData(false, BMTHash, s, tester)
pyramidChunkerKey := testRandomData(true, BMTHash, s, tester)
if treeChunkerKey.String() != pyramidChunkerKey.String() {
tester.t.Fatalf("tree chunker and pyramid chunker key mismatch for size %v\n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
}
}
}
func TestRandomBrokenData(t *testing.T) {
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 123456, 2345678}
tester := &chunkerTester{t: t}
for _, s := range sizes {
testRandomBrokenData(s, tester)
}
}
func benchReadAll(reader LazySectionReader) {
size, _ := reader.Size(context.TODO(), nil)
output := make([]byte, 1000)
for pos := int64(0); pos < size; pos += 1000 {
reader.ReadAt(output, pos)
}
}
func benchmarkSplitJoin(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
putGetter := newTestHasherStore(NewMapChunkStore(), SHA3Hash)
ctx := context.TODO()
key, wait, err := PyramidSplit(ctx, data, putGetter, putGetter)
if err != nil {
t.Fatalf(err.Error())
}
err = wait(ctx)
if err != nil {
t.Fatalf(err.Error())
}
reader := TreeJoin(ctx, key, putGetter, 0)
benchReadAll(reader)
}
}
func benchmarkSplitTreeSHA3(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
putGetter := newTestHasherStore(&fakeChunkStore{}, SHA3Hash)
_, _, err := TreeSplit(context.TODO(), data, int64(n), putGetter)
if err != nil {
t.Fatalf(err.Error())
}
}
}
func benchmarkSplitTreeBMT(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
putGetter := newTestHasherStore(&fakeChunkStore{}, BMTHash)
_, _, err := TreeSplit(context.TODO(), data, int64(n), putGetter)
if err != nil {
t.Fatalf(err.Error())
}
}
}
func benchmarkSplitPyramidSHA3(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
putGetter := newTestHasherStore(&fakeChunkStore{}, SHA3Hash)
_, _, err := PyramidSplit(context.TODO(), data, putGetter, putGetter)
if err != nil {
t.Fatalf(err.Error())
}
}
}
func benchmarkSplitPyramidBMT(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
putGetter := newTestHasherStore(&fakeChunkStore{}, BMTHash)
_, _, err := PyramidSplit(context.TODO(), data, putGetter, putGetter)
if err != nil {
t.Fatalf(err.Error())
}
}
}
func benchmarkSplitAppendPyramid(n, m int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
data := testDataReader(n)
data1 := testDataReader(m)
chunkStore := NewMapChunkStore()
putGetter := newTestHasherStore(chunkStore, SHA3Hash)
ctx := context.TODO()
key, wait, err := PyramidSplit(ctx, data, putGetter, putGetter)
if err != nil {
t.Fatalf(err.Error())
}
err = wait(ctx)
if err != nil {
t.Fatalf(err.Error())
}
putGetter = newTestHasherStore(chunkStore, SHA3Hash)
_, wait, err = PyramidAppend(ctx, key, data1, putGetter, putGetter)
if err != nil {
t.Fatalf(err.Error())
}
err = wait(ctx)
if err != nil {
t.Fatalf(err.Error())
}
}
}
func BenchmarkSplitJoin_2(t *testing.B) { benchmarkSplitJoin(100, t) }
func BenchmarkSplitJoin_3(t *testing.B) { benchmarkSplitJoin(1000, t) }
func BenchmarkSplitJoin_4(t *testing.B) { benchmarkSplitJoin(10000, t) }
func BenchmarkSplitJoin_5(t *testing.B) { benchmarkSplitJoin(100000, t) }
func BenchmarkSplitJoin_6(t *testing.B) { benchmarkSplitJoin(1000000, t) }
func BenchmarkSplitJoin_7(t *testing.B) { benchmarkSplitJoin(10000000, t) }
// func BenchmarkSplitJoin_8(t *testing.B) { benchmarkJoin(100000000, t) }
func BenchmarkSplitTreeSHA3_2(t *testing.B) { benchmarkSplitTreeSHA3(100, t) }
func BenchmarkSplitTreeSHA3_2h(t *testing.B) { benchmarkSplitTreeSHA3(500, t) }
func BenchmarkSplitTreeSHA3_3(t *testing.B) { benchmarkSplitTreeSHA3(1000, t) }
func BenchmarkSplitTreeSHA3_3h(t *testing.B) { benchmarkSplitTreeSHA3(5000, t) }
func BenchmarkSplitTreeSHA3_4(t *testing.B) { benchmarkSplitTreeSHA3(10000, t) }
func BenchmarkSplitTreeSHA3_4h(t *testing.B) { benchmarkSplitTreeSHA3(50000, t) }
func BenchmarkSplitTreeSHA3_5(t *testing.B) { benchmarkSplitTreeSHA3(100000, t) }
func BenchmarkSplitTreeSHA3_6(t *testing.B) { benchmarkSplitTreeSHA3(1000000, t) }
func BenchmarkSplitTreeSHA3_7(t *testing.B) { benchmarkSplitTreeSHA3(10000000, t) }
// func BenchmarkSplitTreeSHA3_8(t *testing.B) { benchmarkSplitTreeSHA3(100000000, t) }
func BenchmarkSplitTreeBMT_2(t *testing.B) { benchmarkSplitTreeBMT(100, t) }
func BenchmarkSplitTreeBMT_2h(t *testing.B) { benchmarkSplitTreeBMT(500, t) }
func BenchmarkSplitTreeBMT_3(t *testing.B) { benchmarkSplitTreeBMT(1000, t) }
func BenchmarkSplitTreeBMT_3h(t *testing.B) { benchmarkSplitTreeBMT(5000, t) }
func BenchmarkSplitTreeBMT_4(t *testing.B) { benchmarkSplitTreeBMT(10000, t) }
func BenchmarkSplitTreeBMT_4h(t *testing.B) { benchmarkSplitTreeBMT(50000, t) }
func BenchmarkSplitTreeBMT_5(t *testing.B) { benchmarkSplitTreeBMT(100000, t) }
func BenchmarkSplitTreeBMT_6(t *testing.B) { benchmarkSplitTreeBMT(1000000, t) }
func BenchmarkSplitTreeBMT_7(t *testing.B) { benchmarkSplitTreeBMT(10000000, t) }
// func BenchmarkSplitTreeBMT_8(t *testing.B) { benchmarkSplitTreeBMT(100000000, t) }
func BenchmarkSplitPyramidSHA3_2(t *testing.B) { benchmarkSplitPyramidSHA3(100, t) }
func BenchmarkSplitPyramidSHA3_2h(t *testing.B) { benchmarkSplitPyramidSHA3(500, t) }
func BenchmarkSplitPyramidSHA3_3(t *testing.B) { benchmarkSplitPyramidSHA3(1000, t) }
func BenchmarkSplitPyramidSHA3_3h(t *testing.B) { benchmarkSplitPyramidSHA3(5000, t) }
func BenchmarkSplitPyramidSHA3_4(t *testing.B) { benchmarkSplitPyramidSHA3(10000, t) }
func BenchmarkSplitPyramidSHA3_4h(t *testing.B) { benchmarkSplitPyramidSHA3(50000, t) }
func BenchmarkSplitPyramidSHA3_5(t *testing.B) { benchmarkSplitPyramidSHA3(100000, t) }
func BenchmarkSplitPyramidSHA3_6(t *testing.B) { benchmarkSplitPyramidSHA3(1000000, t) }
func BenchmarkSplitPyramidSHA3_7(t *testing.B) { benchmarkSplitPyramidSHA3(10000000, t) }
// func BenchmarkSplitPyramidSHA3_8(t *testing.B) { benchmarkSplitPyramidSHA3(100000000, t) }
func BenchmarkSplitPyramidBMT_2(t *testing.B) { benchmarkSplitPyramidBMT(100, t) }
func BenchmarkSplitPyramidBMT_2h(t *testing.B) { benchmarkSplitPyramidBMT(500, t) }
func BenchmarkSplitPyramidBMT_3(t *testing.B) { benchmarkSplitPyramidBMT(1000, t) }
func BenchmarkSplitPyramidBMT_3h(t *testing.B) { benchmarkSplitPyramidBMT(5000, t) }
func BenchmarkSplitPyramidBMT_4(t *testing.B) { benchmarkSplitPyramidBMT(10000, t) }
func BenchmarkSplitPyramidBMT_4h(t *testing.B) { benchmarkSplitPyramidBMT(50000, t) }
func BenchmarkSplitPyramidBMT_5(t *testing.B) { benchmarkSplitPyramidBMT(100000, t) }
func BenchmarkSplitPyramidBMT_6(t *testing.B) { benchmarkSplitPyramidBMT(1000000, t) }
func BenchmarkSplitPyramidBMT_7(t *testing.B) { benchmarkSplitPyramidBMT(10000000, t) }
// func BenchmarkSplitPyramidBMT_8(t *testing.B) { benchmarkSplitPyramidBMT(100000000, t) }
func BenchmarkSplitAppendPyramid_2(t *testing.B) { benchmarkSplitAppendPyramid(100, 1000, t) }
func BenchmarkSplitAppendPyramid_2h(t *testing.B) { benchmarkSplitAppendPyramid(500, 1000, t) }
func BenchmarkSplitAppendPyramid_3(t *testing.B) { benchmarkSplitAppendPyramid(1000, 1000, t) }
func BenchmarkSplitAppendPyramid_4(t *testing.B) { benchmarkSplitAppendPyramid(10000, 1000, t) }
func BenchmarkSplitAppendPyramid_4h(t *testing.B) { benchmarkSplitAppendPyramid(50000, 1000, t) }
func BenchmarkSplitAppendPyramid_5(t *testing.B) { benchmarkSplitAppendPyramid(1000000, 1000, t) }
func BenchmarkSplitAppendPyramid_6(t *testing.B) { benchmarkSplitAppendPyramid(1000000, 1000, t) }
func BenchmarkSplitAppendPyramid_7(t *testing.B) { benchmarkSplitAppendPyramid(10000000, 1000, t) }
// func BenchmarkAppendPyramid_8(t *testing.B) { benchmarkAppendPyramid(100000000, 1000, t) }
// go test -timeout 20m -cpu 4 -bench=./swarm/storage -run no
// If you dont add the timeout argument above .. the benchmark will timeout and dump