mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-23 12:07:17 +00:00
233 lines
6.5 KiB
Go
233 lines
6.5 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package crypto
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"fmt"
|
|
"io"
|
|
"io/ioutil"
|
|
"math/big"
|
|
"os"
|
|
|
|
"encoding/hex"
|
|
"errors"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
"github.com/ethereum/go-ethereum/crypto/sha3"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
"golang.org/x/crypto/ripemd160"
|
|
)
|
|
|
|
func Keccak256(data ...[]byte) []byte {
|
|
d := sha3.NewKeccak256()
|
|
for _, b := range data {
|
|
d.Write(b)
|
|
}
|
|
return d.Sum(nil)
|
|
}
|
|
|
|
func Keccak256Hash(data ...[]byte) (h common.Hash) {
|
|
d := sha3.NewKeccak256()
|
|
for _, b := range data {
|
|
d.Write(b)
|
|
}
|
|
d.Sum(h[:0])
|
|
return h
|
|
}
|
|
|
|
// Deprecated: For backward compatibility as other packages depend on these
|
|
func Sha3(data ...[]byte) []byte { return Keccak256(data...) }
|
|
func Sha3Hash(data ...[]byte) common.Hash { return Keccak256Hash(data...) }
|
|
|
|
// Creates an ethereum address given the bytes and the nonce
|
|
func CreateAddress(b common.Address, nonce uint64) common.Address {
|
|
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
|
|
return common.BytesToAddress(Keccak256(data)[12:])
|
|
}
|
|
|
|
func Sha256(data []byte) []byte {
|
|
hash := sha256.Sum256(data)
|
|
|
|
return hash[:]
|
|
}
|
|
|
|
func Ripemd160(data []byte) []byte {
|
|
ripemd := ripemd160.New()
|
|
ripemd.Write(data)
|
|
|
|
return ripemd.Sum(nil)
|
|
}
|
|
|
|
// Ecrecover returns the public key for the private key that was used to
|
|
// calculate the signature.
|
|
//
|
|
// Note: secp256k1 expects the recover id to be either 0, 1. Ethereum
|
|
// signatures have a recover id with an offset of 27. Callers must take
|
|
// this into account and if "recovering" from an Ethereum signature adjust.
|
|
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
|
return secp256k1.RecoverPubkey(hash, sig)
|
|
}
|
|
|
|
// New methods using proper ecdsa keys from the stdlib
|
|
func ToECDSA(prv []byte) *ecdsa.PrivateKey {
|
|
if len(prv) == 0 {
|
|
return nil
|
|
}
|
|
|
|
priv := new(ecdsa.PrivateKey)
|
|
priv.PublicKey.Curve = secp256k1.S256()
|
|
priv.D = common.BigD(prv)
|
|
priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(prv)
|
|
return priv
|
|
}
|
|
|
|
func FromECDSA(prv *ecdsa.PrivateKey) []byte {
|
|
if prv == nil {
|
|
return nil
|
|
}
|
|
return prv.D.Bytes()
|
|
}
|
|
|
|
func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
|
|
if len(pub) == 0 {
|
|
return nil
|
|
}
|
|
x, y := elliptic.Unmarshal(secp256k1.S256(), pub)
|
|
return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}
|
|
}
|
|
|
|
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
|
|
if pub == nil || pub.X == nil || pub.Y == nil {
|
|
return nil
|
|
}
|
|
return elliptic.Marshal(secp256k1.S256(), pub.X, pub.Y)
|
|
}
|
|
|
|
// HexToECDSA parses a secp256k1 private key.
|
|
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
|
|
b, err := hex.DecodeString(hexkey)
|
|
if err != nil {
|
|
return nil, errors.New("invalid hex string")
|
|
}
|
|
if len(b) != 32 {
|
|
return nil, errors.New("invalid length, need 256 bits")
|
|
}
|
|
return ToECDSA(b), nil
|
|
}
|
|
|
|
// LoadECDSA loads a secp256k1 private key from the given file.
|
|
// The key data is expected to be hex-encoded.
|
|
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
|
|
buf := make([]byte, 64)
|
|
fd, err := os.Open(file)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer fd.Close()
|
|
if _, err := io.ReadFull(fd, buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
key, err := hex.DecodeString(string(buf))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return ToECDSA(key), nil
|
|
}
|
|
|
|
// SaveECDSA saves a secp256k1 private key to the given file with
|
|
// restrictive permissions. The key data is saved hex-encoded.
|
|
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
|
|
k := hex.EncodeToString(FromECDSA(key))
|
|
return ioutil.WriteFile(file, []byte(k), 0600)
|
|
}
|
|
|
|
func GenerateKey() (*ecdsa.PrivateKey, error) {
|
|
return ecdsa.GenerateKey(secp256k1.S256(), rand.Reader)
|
|
}
|
|
|
|
// ValidateSignatureValues verifies whether the signature values are valid with
|
|
// the given chain rules. The v value is assumed to be either 0 or 1.
|
|
func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
|
|
if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
|
|
return false
|
|
}
|
|
// reject upper range of s values (ECDSA malleability)
|
|
// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
|
|
if homestead && s.Cmp(secp256k1.HalfN) > 0 {
|
|
return false
|
|
}
|
|
// Frontier: allow s to be in full N range
|
|
return r.Cmp(secp256k1.N) < 0 && s.Cmp(secp256k1.N) < 0 && (v == 0 || v == 1)
|
|
}
|
|
|
|
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
|
s, err := Ecrecover(hash, sig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
x, y := elliptic.Unmarshal(secp256k1.S256(), s)
|
|
return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}, nil
|
|
}
|
|
|
|
// Sign calculates an ECDSA signature.
|
|
//
|
|
// This function is susceptible to chosen plaintext attacks that can leak
|
|
// information about the private key that is used for signing. Callers must
|
|
// be aware that the given hash cannot be chosen by an adversery. Common
|
|
// solution is to hash any input before calculating the signature.
|
|
//
|
|
// The produced signature is in the [R || S || V] format where V is 0 or 1.
|
|
func Sign(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
|
|
if len(data) != 32 {
|
|
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(data))
|
|
}
|
|
|
|
seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
|
|
defer zeroBytes(seckey)
|
|
sig, err = secp256k1.Sign(data, seckey)
|
|
return
|
|
}
|
|
|
|
func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
|
|
return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
|
|
}
|
|
|
|
func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
|
|
key := ecies.ImportECDSA(prv)
|
|
return key.Decrypt(rand.Reader, ct, nil, nil)
|
|
}
|
|
|
|
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
|
|
pubBytes := FromECDSAPub(&p)
|
|
return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
|
|
}
|
|
|
|
func zeroBytes(bytes []byte) {
|
|
for i := range bytes {
|
|
bytes[i] = 0
|
|
}
|
|
}
|