erigon-pulse/eth/fetcher/tx_fetcher.go
2020-02-27 17:22:25 +03:00

895 lines
32 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package fetcher
import (
"bytes"
"fmt"
mrand "math/rand"
"sort"
"time"
mapset "github.com/deckarep/golang-set"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/common/mclock"
"github.com/ledgerwatch/turbo-geth/core"
"github.com/ledgerwatch/turbo-geth/core/types"
"github.com/ledgerwatch/turbo-geth/log"
"github.com/ledgerwatch/turbo-geth/metrics"
)
const (
// maxTxAnnounces is the maximum number of unique transaction a peer
// can announce in a short time.
maxTxAnnounces = 4096
// maxTxRetrievals is the maximum transaction number can be fetched in one
// request. The rationale to pick 256 is:
// - In eth protocol, the softResponseLimit is 2MB. Nowadays according to
// Etherscan the average transaction size is around 200B, so in theory
// we can include lots of transaction in a single protocol packet.
// - However the maximum size of a single transaction is raised to 128KB,
// so pick a middle value here to ensure we can maximize the efficiency
// of the retrieval and response size overflow won't happen in most cases.
maxTxRetrievals = 256
// maxTxUnderpricedSetSize is the size of the underpriced transaction set that
// is used to track recent transactions that have been dropped so we don't
// re-request them.
maxTxUnderpricedSetSize = 32768
// txArriveTimeout is the time allowance before an announced transaction is
// explicitly requested.
txArriveTimeout = 500 * time.Millisecond
// txGatherSlack is the interval used to collate almost-expired announces
// with network fetches.
txGatherSlack = 100 * time.Millisecond
)
var (
// txFetchTimeout is the maximum allotted time to return an explicitly
// requested transaction.
txFetchTimeout = 5 * time.Second
)
var (
txAnnounceInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/in", nil)
txAnnounceKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/known", nil)
txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/underpriced", nil)
txAnnounceDOSMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/dos", nil)
txBroadcastInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/in", nil)
txBroadcastKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/known", nil)
txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/underpriced", nil)
txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/otherreject", nil)
txRequestOutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/out", nil)
txRequestFailMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/fail", nil)
txRequestDoneMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/done", nil)
txRequestTimeoutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/timeout", nil)
txReplyInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/in", nil)
txReplyKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/known", nil)
txReplyUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/underpriced", nil)
txReplyOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/otherreject", nil)
txFetcherWaitingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/peers", nil)
txFetcherWaitingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/hashes", nil)
txFetcherQueueingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/peers", nil)
txFetcherQueueingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/hashes", nil)
txFetcherFetchingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/peers", nil)
txFetcherFetchingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/hashes", nil)
)
// txAnnounce is the notification of the availability of a batch
// of new transactions in the network.
type txAnnounce struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes being announced
}
// txRequest represents an in-flight transaction retrieval request destined to
// a specific peers.
type txRequest struct {
hashes []common.Hash // Transactions having been requested
stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request)
time mclock.AbsTime // Timestamp of the request
}
// txDelivery is the notification that a batch of transactions have been added
// to the pool and should be untracked.
type txDelivery struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes having been delivered
direct bool // Whether this is a direct reply or a broadcast
}
// txDrop is the notiication that a peer has disconnected.
type txDrop struct {
peer string
}
// TxFetcher is responsible for retrieving new transaction based on announcements.
//
// The fetcher operates in 3 stages:
// - Transactions that are newly discovered are moved into a wait list.
// - After ~500ms passes, transactions from the wait list that have not been
// broadcast to us in whole are moved into a queueing area.
// - When a connected peer doesn't have in-flight retrieval requests, any
// transaction queued up (and announced by the peer) are allocated to the
// peer and moved into a fetching status until it's fulfilled or fails.
//
// The invariants of the fetcher are:
// - Each tracked transaction (hash) must only be present in one of the
// three stages. This ensures that the fetcher operates akin to a finite
// state automata and there's do data leak.
// - Each peer that announced transactions may be scheduled retrievals, but
// only ever one concurrently. This ensures we can immediately know what is
// missing from a reply and reschedule it.
type TxFetcher struct {
notify chan *txAnnounce
cleanup chan *txDelivery
drop chan *txDrop
quit chan struct{}
underpriced mapset.Set // Transactions discarded as too cheap (don't re-fetch)
// Stage 1: Waiting lists for newly discovered transactions that might be
// broadcast without needing explicit request/reply round trips.
waitlist map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast
waittime map[common.Hash]mclock.AbsTime // Timestamps when transactions were added to the waitlist
waitslots map[string]map[common.Hash]struct{} // Waiting announcement sgroupped by peer (DoS protection)
// Stage 2: Queue of transactions that waiting to be allocated to some peer
// to be retrieved directly.
announces map[string]map[common.Hash]struct{} // Set of announced transactions, grouped by origin peer
announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash
// Stage 3: Set of transactions currently being retrieved, some which may be
// fulfilled and some rescheduled. Note, this step shares 'announces' from the
// previous stage to avoid having to duplicate (need it for DoS checks).
fetching map[common.Hash]string // Transaction set currently being retrieved
requests map[string]*txRequest // In-flight transaction retrievals
alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails
// Callbacks
hasTx func(common.Hash) bool // Retrieves a tx from the local txpool
addTxs func([]*types.Transaction) []error // Insert a batch of transactions into local txpool
fetchTxs func(string, []common.Hash) error // Retrieves a set of txs from a remote peer
step chan struct{} // Notification channel when the fetcher loop iterates
clock mclock.Clock // Time wrapper to simulate in tests
rand *mrand.Rand // Randomizer to use in tests instead of map range loops (soft-random)
}
// NewTxFetcher creates a transaction fetcher to retrieve transaction
// based on hash announcements.
func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error) *TxFetcher {
return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, mclock.System{}, nil)
}
// NewTxFetcherForTests is a testing method to mock out the realtime clock with
// a simulated version and the internal randomness with a deterministic one.
func NewTxFetcherForTests(
hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error,
clock mclock.Clock, rand *mrand.Rand) *TxFetcher {
return &TxFetcher{
notify: make(chan *txAnnounce),
cleanup: make(chan *txDelivery),
drop: make(chan *txDrop),
quit: make(chan struct{}),
waitlist: make(map[common.Hash]map[string]struct{}),
waittime: make(map[common.Hash]mclock.AbsTime),
waitslots: make(map[string]map[common.Hash]struct{}),
announces: make(map[string]map[common.Hash]struct{}),
announced: make(map[common.Hash]map[string]struct{}),
fetching: make(map[common.Hash]string),
requests: make(map[string]*txRequest),
alternates: make(map[common.Hash]map[string]struct{}),
underpriced: mapset.NewSet(),
hasTx: hasTx,
addTxs: addTxs,
fetchTxs: fetchTxs,
clock: clock,
rand: rand,
}
}
// Notify announces the fetcher of the potential availability of a new batch of
// transactions in the network.
func (f *TxFetcher) Notify(peer string, hashes []common.Hash) error {
// Keep track of all the announced transactions
txAnnounceInMeter.Mark(int64(len(hashes)))
// Skip any transaction announcements that we already know of, or that we've
// previously marked as cheap and discarded. This check is of course racey,
// because multiple concurrent notifies will still manage to pass it, but it's
// still valuable to check here because it runs concurrent to the internal
// loop, so anything caught here is time saved internally.
var (
unknowns = make([]common.Hash, 0, len(hashes))
duplicate, underpriced int64
)
for _, hash := range hashes {
switch {
case f.hasTx(hash):
duplicate++
case f.underpriced.Contains(hash):
underpriced++
default:
unknowns = append(unknowns, hash)
}
}
txAnnounceKnownMeter.Mark(duplicate)
txAnnounceUnderpricedMeter.Mark(underpriced)
// If anything's left to announce, push it into the internal loop
if len(unknowns) == 0 {
return nil
}
announce := &txAnnounce{
origin: peer,
hashes: unknowns,
}
select {
case f.notify <- announce:
return nil
case <-f.quit:
return errTerminated
}
}
// Enqueue imports a batch of received transaction into the transaction pool
// and the fetcher. This method may be called by both transaction broadcasts and
// direct request replies. The differentiation is important so the fetcher can
// re-shedule missing transactions as soon as possible.
func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error {
// Keep track of all the propagated transactions
if direct {
txReplyInMeter.Mark(int64(len(txs)))
} else {
txBroadcastInMeter.Mark(int64(len(txs)))
}
// Push all the transactions into the pool, tracking underpriced ones to avoid
// re-requesting them and dropping the peer in case of malicious transfers.
var (
added = make([]common.Hash, 0, len(txs))
duplicate int64
underpriced int64
otherreject int64
)
errs := f.addTxs(txs)
for i, err := range errs {
if err != nil {
// Track the transaction hash if the price is too low for us.
// Avoid re-request this transaction when we receive another
// announcement.
if err == core.ErrUnderpriced || err == core.ErrReplaceUnderpriced {
for f.underpriced.Cardinality() >= maxTxUnderpricedSetSize {
f.underpriced.Pop()
}
f.underpriced.Add(txs[i].Hash())
}
// Track a few interesting failure types
switch err {
case nil: // Noop, but need to handle to not count these
case core.ErrAlreadyKnown:
duplicate++
case core.ErrUnderpriced, core.ErrReplaceUnderpriced:
underpriced++
default:
otherreject++
}
}
added = append(added, txs[i].Hash())
}
if direct {
txReplyKnownMeter.Mark(duplicate)
txReplyUnderpricedMeter.Mark(underpriced)
txReplyOtherRejectMeter.Mark(otherreject)
} else {
txBroadcastKnownMeter.Mark(duplicate)
txBroadcastUnderpricedMeter.Mark(underpriced)
txBroadcastOtherRejectMeter.Mark(otherreject)
}
select {
case f.cleanup <- &txDelivery{origin: peer, hashes: added, direct: direct}:
return nil
case <-f.quit:
return errTerminated
}
}
// Drop should be called when a peer disconnects. It cleans up all the internal
// data structures of the given node.
func (f *TxFetcher) Drop(peer string) error {
select {
case f.drop <- &txDrop{peer: peer}:
return nil
case <-f.quit:
return errTerminated
}
}
// Start boots up the announcement based synchroniser, accepting and processing
// hash notifications and block fetches until termination requested.
func (f *TxFetcher) Start() {
go f.loop()
}
// Stop terminates the announcement based synchroniser, canceling all pending
// operations.
func (f *TxFetcher) Stop() {
close(f.quit)
}
func (f *TxFetcher) loop() {
var (
waitTimer = new(mclock.Timer)
timeoutTimer = new(mclock.Timer)
waitTrigger = make(chan struct{}, 1)
timeoutTrigger = make(chan struct{}, 1)
)
for {
select {
case ann := <-f.notify:
// Drop part of the new announcements if there are too many accumulated.
// Note, we could but do not filter already known transactions here as
// the probability of something arriving between this call and the pre-
// filter outside is essentially zero.
used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin])
if used >= maxTxAnnounces {
// This can happen if a set of transactions are requested but not
// all fulfilled, so the remainder are rescheduled without the cap
// check. Should be fine as the limit is in the thousands and the
// request size in the hundreds.
txAnnounceDOSMeter.Mark(int64(len(ann.hashes)))
break
}
want := used + len(ann.hashes)
if want > maxTxAnnounces {
txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces))
ann.hashes = ann.hashes[:want-maxTxAnnounces]
}
// All is well, schedule the remainder of the transactions
idleWait := len(f.waittime) == 0
_, oldPeer := f.announces[ann.origin]
for _, hash := range ann.hashes {
// If the transaction is already downloading, add it to the list
// of possible alternates (in case the current retrieval fails) and
// also account it for the peer.
if f.alternates[hash] != nil {
f.alternates[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// If the transaction is not downloading, but is already queued
// from a different peer, track it for the new peer too.
if f.announced[hash] != nil {
f.announced[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// If the transaction is already known to the fetcher, but not
// yet downloading, add the peer as an alternate origin in the
// waiting list.
if f.waitlist[hash] != nil {
f.waitlist[hash][ann.origin] = struct{}{}
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = struct{}{}
} else {
f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// Transaction unknown to the fetcher, insert it into the waiting list
f.waitlist[hash] = map[string]struct{}{ann.origin: {}}
f.waittime[hash] = f.clock.Now()
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = struct{}{}
} else {
f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
}
// If a new item was added to the waitlist, schedule it into the fetcher
if idleWait && len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If this peer is new and announced something already queued, maybe
// request transactions from them
if !oldPeer && len(f.announces[ann.origin]) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}})
}
case <-waitTrigger:
// At least one transaction's waiting time ran out, push all expired
// ones into the retrieval queues
actives := make(map[string]struct{})
for hash, instance := range f.waittime {
if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout {
// Transaction expired without propagation, schedule for retrieval
if f.announced[hash] != nil {
panic("announce tracker already contains waitlist item")
}
f.announced[hash] = f.waitlist[hash]
for peer := range f.waitlist[hash] {
if announces := f.announces[peer]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[peer] = map[common.Hash]struct{}{hash: {}}
}
delete(f.waitslots[peer], hash)
if len(f.waitslots[peer]) == 0 {
delete(f.waitslots, peer)
}
actives[peer] = struct{}{}
}
delete(f.waittime, hash)
delete(f.waitlist, hash)
}
}
// If transactions are still waiting for propagation, reschedule the wait timer
if len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If any peers became active and are idle, request transactions from them
if len(actives) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, actives)
}
case <-timeoutTrigger:
// Clean up any expired retrievals and avoid re-requesting them from the
// same peer (either overloaded or malicious, useless in both cases). We
// could also penalize (Drop), but there's nothing to gain, and if could
// possibly further increase the load on it.
for peer, req := range f.requests {
if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout {
txRequestTimeoutMeter.Mark(int64(len(req.hashes)))
// Reschedule all the not-yet-delivered fetches to alternate peers
for _, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
// Move the delivery back from fetching to queued
if _, ok := f.announced[hash]; ok {
panic("announced tracker already contains alternate item")
}
if f.alternates[hash] != nil { // nil if tx was broadcast during fetch
f.announced[hash] = f.alternates[hash]
}
delete(f.announced[hash], peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
delete(f.announces[peer], hash)
delete(f.alternates, hash)
delete(f.fetching, hash)
}
if len(f.announces[peer]) == 0 {
delete(f.announces, peer)
}
// Keep track of the request as dangling, but never expire
f.requests[peer].hashes = nil
}
}
// Schedule a new transaction retrieval
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
// No idea if we sheduled something or not, trigger the timer if needed
// TODO(karalabe): this is kind of lame, can't we dump it into scheduleFetches somehow?
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
case delivery := <-f.cleanup:
// Independent if the delivery was direct or broadcast, remove all
// traces of the hash from internal trackers
for _, hash := range delivery.hashes {
if _, ok := f.waitlist[hash]; ok {
for peer, txset := range f.waitslots {
delete(txset, hash)
if len(txset) == 0 {
delete(f.waitslots, peer)
}
}
delete(f.waitlist, hash)
delete(f.waittime, hash)
} else {
for peer, txset := range f.announces {
delete(txset, hash)
if len(txset) == 0 {
delete(f.announces, peer)
}
}
delete(f.announced, hash)
delete(f.alternates, hash)
// If a transaction currently being fetched from a different
// origin was delivered (delivery stolen), mark it so the
// actual delivery won't double schedule it.
if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) {
stolen := f.requests[origin].stolen
if stolen == nil {
f.requests[origin].stolen = make(map[common.Hash]struct{})
stolen = f.requests[origin].stolen
}
stolen[hash] = struct{}{}
}
delete(f.fetching, hash)
}
}
// In case of a direct delivery, also reschedule anything missing
// from the original query
if delivery.direct {
// Mark the reqesting successful (independent of individual status)
txRequestDoneMeter.Mark(int64(len(delivery.hashes)))
// Make sure something was pending, nuke it
req := f.requests[delivery.origin]
if req == nil {
log.Warn("Unexpected transaction delivery", "peer", delivery.origin)
break
}
delete(f.requests, delivery.origin)
// Anything not delivered should be re-scheduled (with or without
// this peer, depending on the response cutoff)
delivered := make(map[common.Hash]struct{})
for _, hash := range delivery.hashes {
delivered[hash] = struct{}{}
}
cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!!
for i, hash := range req.hashes {
if _, ok := delivered[hash]; ok {
cutoff = i
}
}
// Reschedule missing hashes from alternates, not-fulfilled from alt+self
for i, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
if _, ok := delivered[hash]; !ok {
if i < cutoff {
delete(f.alternates[hash], delivery.origin)
delete(f.announces[delivery.origin], hash)
if len(f.announces[delivery.origin]) == 0 {
delete(f.announces, delivery.origin)
}
}
if len(f.alternates[hash]) > 0 {
if _, ok := f.announced[hash]; ok {
panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash]))
}
f.announced[hash] = f.alternates[hash]
}
}
delete(f.alternates, hash)
delete(f.fetching, hash)
}
// Something was delivered, try to rechedule requests
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too
}
case drop := <-f.drop:
// A peer was dropped, remove all traces of it
if _, ok := f.waitslots[drop.peer]; ok {
for hash := range f.waitslots[drop.peer] {
delete(f.waitlist[hash], drop.peer)
if len(f.waitlist[hash]) == 0 {
delete(f.waitlist, hash)
delete(f.waittime, hash)
}
}
delete(f.waitslots, drop.peer)
if len(f.waitlist) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
}
// Clean up any active requests
var request *txRequest
if request = f.requests[drop.peer]; request != nil {
for _, hash := range request.hashes {
// Skip rescheduling hashes already delivered by someone else
if request.stolen != nil {
if _, ok := request.stolen[hash]; ok {
continue
}
}
// Undelivered hash, reschedule if there's an alternative origin available
delete(f.alternates[hash], drop.peer)
if len(f.alternates[hash]) == 0 {
delete(f.alternates, hash)
} else {
f.announced[hash] = f.alternates[hash]
delete(f.alternates, hash)
}
delete(f.fetching, hash)
}
delete(f.requests, drop.peer)
}
// Clean up general announcement tracking
if _, ok := f.announces[drop.peer]; ok {
for hash := range f.announces[drop.peer] {
delete(f.announced[hash], drop.peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
}
delete(f.announces, drop.peer)
}
// If a request was cancelled, check if anything needs to be rescheduled
if request != nil {
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
}
case <-f.quit:
return
}
// No idea what happened, but bump some sanity metrics
txFetcherWaitingPeers.Update(int64(len(f.waitslots)))
txFetcherWaitingHashes.Update(int64(len(f.waitlist)))
txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests)))
txFetcherQueueingHashes.Update(int64(len(f.announced)))
txFetcherFetchingPeers.Update(int64(len(f.requests)))
txFetcherFetchingHashes.Update(int64(len(f.fetching)))
// Loop did something, ping the step notifier if needed (tests)
if f.step != nil {
f.step <- struct{}{}
}
}
}
// rescheduleWait iterates over all the transactions currently in the waitlist
// and schedules the movement into the fetcher for the earliest.
//
// The method has a granularity of 'gatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, instance := range f.waittime {
if earliest > instance {
earliest = instance
if txArriveTimeout-time.Duration(now-earliest) < gatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// rescheduleTimeout iterates over all the transactions currently in flight and
// schedules a cleanup run when the first would trigger.
//
// The method has a granularity of 'gatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
//
// This method is a bit "flaky" "by design". In theory the timeout timer only ever
// should be rescheduled if some request is pending. In practice, a timeout will
// cause the timer to be rescheduled every 5 secs (until the peer comes through or
// disconnects). This is a limitation of the fetcher code because we don't trac
// pending requests and timed out requests separatey. Without double tracking, if
// we simply didn't reschedule the timer on all-timeout then the timer would never
// be set again since len(request) > 0 => something's running.
func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, req := range f.requests {
// If this request already timed out, skip it altogether
if req.hashes == nil {
continue
}
if earliest > req.time {
earliest = req.time
if txFetchTimeout-time.Duration(now-earliest) < gatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// scheduleFetches starts a batch of retrievals for all available idle peers.
func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) {
// Gather the set of peers we want to retrieve from (default to all)
actives := whitelist
if actives == nil {
actives = make(map[string]struct{})
for peer := range f.announces {
actives[peer] = struct{}{}
}
}
if len(actives) == 0 {
return
}
// For each active peer, try to schedule some transaction fetches
idle := len(f.requests) == 0
f.forEachPeer(actives, func(peer string) {
if f.requests[peer] != nil {
return // continue in the for-each
}
if len(f.announces[peer]) == 0 {
return // continue in the for-each
}
hashes := make([]common.Hash, 0, maxTxRetrievals)
f.forEachHash(f.announces[peer], func(hash common.Hash) bool {
if _, ok := f.fetching[hash]; !ok {
// Mark the hash as fetching and stash away possible alternates
f.fetching[hash] = peer
if _, ok := f.alternates[hash]; ok {
panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash]))
}
f.alternates[hash] = f.announced[hash]
delete(f.announced, hash)
// Accumulate the hash and stop if the limit was reached
hashes = append(hashes, hash)
if len(hashes) >= maxTxRetrievals {
return false // break in the for-each
}
}
return true // continue in the for-each
})
// If any hashes were allocated, request them from the peer
if len(hashes) > 0 {
f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()}
txRequestOutMeter.Mark(int64(len(hashes)))
go func(peer string, hashes []common.Hash) {
// Try to fetch the transactions, but in case of a request
// failure (e.g. peer disconnected), reschedule the hashes.
if err := f.fetchTxs(peer, hashes); err != nil {
txRequestFailMeter.Mark(int64(len(hashes)))
f.Drop(peer) //nolint:errcheck
}
}(peer, hashes)
}
})
// If a new request was fired, schedule a timeout timer
if idle && len(f.requests) > 0 {
f.rescheduleTimeout(timer, timeout)
}
}
// forEachPeer does a range loop over a map of peers in production, but during
// testing it does a deterministic sorted random to allow reproducing issues.
func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) {
// If we're running production, use whatever Go's map gives us
if f.rand == nil {
for peer := range peers {
do(peer)
}
return
}
// We're running the test suite, make iteration deterministic
list := make([]string, 0, len(peers))
for peer := range peers {
list = append(list, peer)
}
sort.Strings(list)
rotateStrings(list, f.rand.Intn(len(list)))
for _, peer := range list {
do(peer)
}
}
// forEachHash does a range loop over a map of hashes in production, but during
// testing it does a deterministic sorted random to allow reproducing issues.
func (f *TxFetcher) forEachHash(hashes map[common.Hash]struct{}, do func(hash common.Hash) bool) {
// If we're running production, use whatever Go's map gives us
if f.rand == nil {
for hash := range hashes {
if !do(hash) {
return
}
}
return
}
// We're running the test suite, make iteration deterministic
list := make([]common.Hash, 0, len(hashes))
for hash := range hashes {
list = append(list, hash)
}
sortHashes(list)
rotateHashes(list, f.rand.Intn(len(list)))
for _, hash := range list {
if !do(hash) {
return
}
}
}
// rotateStrings rotates the contents of a slice by n steps. This method is only
// used in tests to simulate random map iteration but keep it deterministic.
func rotateStrings(slice []string, n int) {
orig := make([]string, len(slice))
copy(orig, slice)
for i := 0; i < len(orig); i++ {
slice[i] = orig[(i+n)%len(orig)]
}
}
// sortHashes sorts a slice of hashes. This method is only used in tests in order
// to simulate random map iteration but keep it deterministic.
func sortHashes(slice []common.Hash) {
for i := 0; i < len(slice); i++ {
for j := i + 1; j < len(slice); j++ {
if bytes.Compare(slice[i][:], slice[j][:]) > 0 {
slice[i], slice[j] = slice[j], slice[i]
}
}
}
}
// rotateHashes rotates the contents of a slice by n steps. This method is only
// used in tests to simulate random map iteration but keep it deterministic.
func rotateHashes(slice []common.Hash, n int) {
orig := make([]common.Hash, len(slice))
copy(orig, slice)
for i := 0; i < len(orig); i++ {
slice[i] = orig[(i+n)%len(orig)]
}
}