erigon-pulse/p2p/enr/enr.go
Felix Lange e83c3ccc47
p2p/enode: improve IPv6 support, add ENR text representation (#19663)
* p2p/enr: add entries for for IPv4/IPv6 separation

This adds entry types for "ip6", "udp6", "tcp6" keys. The IP type stays
around because removing it would break a lot of code and force everyone
to care about the distinction.

* p2p/enode: track IPv4 and IPv6 address separately

LocalNode predicts the local node's UDP endpoint and updates the record.
This change makes it predict IPv4 and IPv6 endpoints separately since
they can now be in the record at the same time.

* p2p/enode: implement base64 text format
* all: switch to enode.Parse(...)

This allows passing base64-encoded node records to all the places that
previously accepted enode:// URLs. The URL format is still supported.

* cmd/bootnode, p2p: log node URL instead of ENR

...and return the base64 record in NodeInfo.
2019-06-07 15:31:00 +02:00

311 lines
8.7 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package enr implements Ethereum Node Records as defined in EIP-778. A node record holds
// arbitrary information about a node on the peer-to-peer network. Node information is
// stored in key/value pairs. To store and retrieve key/values in a record, use the Entry
// interface.
//
// Signature Handling
//
// Records must be signed before transmitting them to another node.
//
// Decoding a record doesn't check its signature. Code working with records from an
// untrusted source must always verify two things: that the record uses an identity scheme
// deemed secure, and that the signature is valid according to the declared scheme.
//
// When creating a record, set the entries you want and use a signing function provided by
// the identity scheme to add the signature. Modifying a record invalidates the signature.
//
// Package enr supports the "secp256k1-keccak" identity scheme.
package enr
import (
"bytes"
"errors"
"fmt"
"io"
"sort"
"github.com/ethereum/go-ethereum/rlp"
)
const SizeLimit = 300 // maximum encoded size of a node record in bytes
var (
ErrInvalidSig = errors.New("invalid signature on node record")
errNotSorted = errors.New("record key/value pairs are not sorted by key")
errDuplicateKey = errors.New("record contains duplicate key")
errIncompletePair = errors.New("record contains incomplete k/v pair")
errTooBig = fmt.Errorf("record bigger than %d bytes", SizeLimit)
errEncodeUnsigned = errors.New("can't encode unsigned record")
errNotFound = errors.New("no such key in record")
)
// An IdentityScheme is capable of verifying record signatures and
// deriving node addresses.
type IdentityScheme interface {
Verify(r *Record, sig []byte) error
NodeAddr(r *Record) []byte
}
// SchemeMap is a registry of named identity schemes.
type SchemeMap map[string]IdentityScheme
func (m SchemeMap) Verify(r *Record, sig []byte) error {
s := m[r.IdentityScheme()]
if s == nil {
return ErrInvalidSig
}
return s.Verify(r, sig)
}
func (m SchemeMap) NodeAddr(r *Record) []byte {
s := m[r.IdentityScheme()]
if s == nil {
return nil
}
return s.NodeAddr(r)
}
// Record represents a node record. The zero value is an empty record.
type Record struct {
seq uint64 // sequence number
signature []byte // the signature
raw []byte // RLP encoded record
pairs []pair // sorted list of all key/value pairs
}
// pair is a key/value pair in a record.
type pair struct {
k string
v rlp.RawValue
}
// Seq returns the sequence number.
func (r *Record) Seq() uint64 {
return r.seq
}
// SetSeq updates the record sequence number. This invalidates any signature on the record.
// Calling SetSeq is usually not required because setting any key in a signed record
// increments the sequence number.
func (r *Record) SetSeq(s uint64) {
r.signature = nil
r.raw = nil
r.seq = s
}
// Load retrieves the value of a key/value pair. The given Entry must be a pointer and will
// be set to the value of the entry in the record.
//
// Errors returned by Load are wrapped in KeyError. You can distinguish decoding errors
// from missing keys using the IsNotFound function.
func (r *Record) Load(e Entry) error {
i := sort.Search(len(r.pairs), func(i int) bool { return r.pairs[i].k >= e.ENRKey() })
if i < len(r.pairs) && r.pairs[i].k == e.ENRKey() {
if err := rlp.DecodeBytes(r.pairs[i].v, e); err != nil {
return &KeyError{Key: e.ENRKey(), Err: err}
}
return nil
}
return &KeyError{Key: e.ENRKey(), Err: errNotFound}
}
// Set adds or updates the given entry in the record. It panics if the value can't be
// encoded. If the record is signed, Set increments the sequence number and invalidates
// the sequence number.
func (r *Record) Set(e Entry) {
blob, err := rlp.EncodeToBytes(e)
if err != nil {
panic(fmt.Errorf("enr: can't encode %s: %v", e.ENRKey(), err))
}
r.invalidate()
pairs := make([]pair, len(r.pairs))
copy(pairs, r.pairs)
i := sort.Search(len(pairs), func(i int) bool { return pairs[i].k >= e.ENRKey() })
switch {
case i < len(pairs) && pairs[i].k == e.ENRKey():
// element is present at r.pairs[i]
pairs[i].v = blob
case i < len(r.pairs):
// insert pair before i-th elem
el := pair{e.ENRKey(), blob}
pairs = append(pairs, pair{})
copy(pairs[i+1:], pairs[i:])
pairs[i] = el
default:
// element should be placed at the end of r.pairs
pairs = append(pairs, pair{e.ENRKey(), blob})
}
r.pairs = pairs
}
func (r *Record) invalidate() {
if r.signature != nil {
r.seq++
}
r.signature = nil
r.raw = nil
}
// Signature returns the signature of the record.
func (r *Record) Signature() []byte {
if r.signature == nil {
return nil
}
cpy := make([]byte, len(r.signature))
copy(cpy, r.signature)
return cpy
}
// EncodeRLP implements rlp.Encoder. Encoding fails if
// the record is unsigned.
func (r Record) EncodeRLP(w io.Writer) error {
if r.signature == nil {
return errEncodeUnsigned
}
_, err := w.Write(r.raw)
return err
}
// DecodeRLP implements rlp.Decoder. Decoding doesn't verify the signature.
func (r *Record) DecodeRLP(s *rlp.Stream) error {
dec, raw, err := decodeRecord(s)
if err != nil {
return err
}
*r = dec
r.raw = raw
return nil
}
func decodeRecord(s *rlp.Stream) (dec Record, raw []byte, err error) {
raw, err = s.Raw()
if err != nil {
return dec, raw, err
}
if len(raw) > SizeLimit {
return dec, raw, errTooBig
}
// Decode the RLP container.
s = rlp.NewStream(bytes.NewReader(raw), 0)
if _, err := s.List(); err != nil {
return dec, raw, err
}
if err = s.Decode(&dec.signature); err != nil {
return dec, raw, err
}
if err = s.Decode(&dec.seq); err != nil {
return dec, raw, err
}
// The rest of the record contains sorted k/v pairs.
var prevkey string
for i := 0; ; i++ {
var kv pair
if err := s.Decode(&kv.k); err != nil {
if err == rlp.EOL {
break
}
return dec, raw, err
}
if err := s.Decode(&kv.v); err != nil {
if err == rlp.EOL {
return dec, raw, errIncompletePair
}
return dec, raw, err
}
if i > 0 {
if kv.k == prevkey {
return dec, raw, errDuplicateKey
}
if kv.k < prevkey {
return dec, raw, errNotSorted
}
}
dec.pairs = append(dec.pairs, kv)
prevkey = kv.k
}
return dec, raw, s.ListEnd()
}
// IdentityScheme returns the name of the identity scheme in the record.
func (r *Record) IdentityScheme() string {
var id ID
r.Load(&id)
return string(id)
}
// VerifySignature checks whether the record is signed using the given identity scheme.
func (r *Record) VerifySignature(s IdentityScheme) error {
return s.Verify(r, r.signature)
}
// SetSig sets the record signature. It returns an error if the encoded record is larger
// than the size limit or if the signature is invalid according to the passed scheme.
//
// You can also use SetSig to remove the signature explicitly by passing a nil scheme
// and signature.
//
// SetSig panics when either the scheme or the signature (but not both) are nil.
func (r *Record) SetSig(s IdentityScheme, sig []byte) error {
switch {
// Prevent storing invalid data.
case s == nil && sig != nil:
panic("enr: invalid call to SetSig with non-nil signature but nil scheme")
case s != nil && sig == nil:
panic("enr: invalid call to SetSig with nil signature but non-nil scheme")
// Verify if we have a scheme.
case s != nil:
if err := s.Verify(r, sig); err != nil {
return err
}
raw, err := r.encode(sig)
if err != nil {
return err
}
r.signature, r.raw = sig, raw
// Reset otherwise.
default:
r.signature, r.raw = nil, nil
}
return nil
}
// AppendElements appends the sequence number and entries to the given slice.
func (r *Record) AppendElements(list []interface{}) []interface{} {
list = append(list, r.seq)
for _, p := range r.pairs {
list = append(list, p.k, p.v)
}
return list
}
func (r *Record) encode(sig []byte) (raw []byte, err error) {
list := make([]interface{}, 1, 2*len(r.pairs)+1)
list[0] = sig
list = r.AppendElements(list)
if raw, err = rlp.EncodeToBytes(list); err != nil {
return nil, err
}
if len(raw) > SizeLimit {
return nil, errTooBig
}
return raw, nil
}