mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-14 06:48:20 +00:00
281 lines
7.4 KiB
Go
281 lines
7.4 KiB
Go
// Package discover implements the Node Discovery Protocol.
|
|
//
|
|
// The Node Discovery protocol provides a way to find RLPx nodes that
|
|
// can be connected to. It uses a Kademlia-like protocol to maintain a
|
|
// distributed database of the IDs and endpoints of all listening
|
|
// nodes.
|
|
package discover
|
|
|
|
import (
|
|
"net"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
alpha = 3 // Kademlia concurrency factor
|
|
bucketSize = 16 // Kademlia bucket size
|
|
nBuckets = nodeIDBits + 1 // Number of buckets
|
|
)
|
|
|
|
type Table struct {
|
|
mutex sync.Mutex // protects buckets, their content, and nursery
|
|
buckets [nBuckets]*bucket // index of known nodes by distance
|
|
nursery []*Node // bootstrap nodes
|
|
|
|
net transport
|
|
self *Node // metadata of the local node
|
|
}
|
|
|
|
// transport is implemented by the UDP transport.
|
|
// it is an interface so we can test without opening lots of UDP
|
|
// sockets and without generating a private key.
|
|
type transport interface {
|
|
ping(*Node) error
|
|
findnode(e *Node, target NodeID) ([]*Node, error)
|
|
close()
|
|
}
|
|
|
|
// bucket contains nodes, ordered by their last activity.
|
|
type bucket struct {
|
|
lastLookup time.Time
|
|
entries []*Node
|
|
}
|
|
|
|
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
|
|
tab := &Table{net: t, self: newNode(ourID, ourAddr)}
|
|
for i := range tab.buckets {
|
|
tab.buckets[i] = new(bucket)
|
|
}
|
|
return tab
|
|
}
|
|
|
|
// Self returns the local node ID.
|
|
func (tab *Table) Self() NodeID {
|
|
return tab.self.ID
|
|
}
|
|
|
|
// Close terminates the network listener.
|
|
func (tab *Table) Close() {
|
|
tab.net.close()
|
|
}
|
|
|
|
// Bootstrap sets the bootstrap nodes. These nodes are used to connect
|
|
// to the network if the table is empty. Bootstrap will also attempt to
|
|
// fill the table by performing random lookup operations on the
|
|
// network.
|
|
func (tab *Table) Bootstrap(nodes []*Node) {
|
|
tab.mutex.Lock()
|
|
// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
|
|
tab.nursery = make([]*Node, 0, len(nodes))
|
|
for _, n := range nodes {
|
|
cpy := *n
|
|
tab.nursery = append(tab.nursery, &cpy)
|
|
}
|
|
tab.mutex.Unlock()
|
|
tab.refresh()
|
|
}
|
|
|
|
// Lookup performs a network search for nodes close
|
|
// to the given target. It approaches the target by querying
|
|
// nodes that are closer to it on each iteration.
|
|
func (tab *Table) Lookup(target NodeID) []*Node {
|
|
var (
|
|
asked = make(map[NodeID]bool)
|
|
seen = make(map[NodeID]bool)
|
|
reply = make(chan []*Node, alpha)
|
|
pendingQueries = 0
|
|
)
|
|
// don't query further if we hit the target or ourself.
|
|
// unlikely to happen often in practice.
|
|
asked[target] = true
|
|
asked[tab.self.ID] = true
|
|
|
|
tab.mutex.Lock()
|
|
// update last lookup stamp (for refresh logic)
|
|
tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
|
|
// generate initial result set
|
|
result := tab.closest(target, bucketSize)
|
|
tab.mutex.Unlock()
|
|
|
|
for {
|
|
// ask the alpha closest nodes that we haven't asked yet
|
|
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
|
|
n := result.entries[i]
|
|
if !asked[n.ID] {
|
|
asked[n.ID] = true
|
|
pendingQueries++
|
|
go func() {
|
|
result, _ := tab.net.findnode(n, target)
|
|
reply <- result
|
|
}()
|
|
}
|
|
}
|
|
if pendingQueries == 0 {
|
|
// we have asked all closest nodes, stop the search
|
|
break
|
|
}
|
|
|
|
// wait for the next reply
|
|
for _, n := range <-reply {
|
|
cn := n
|
|
if !seen[n.ID] {
|
|
seen[n.ID] = true
|
|
result.push(cn, bucketSize)
|
|
}
|
|
}
|
|
pendingQueries--
|
|
}
|
|
return result.entries
|
|
}
|
|
|
|
// refresh performs a lookup for a random target to keep buckets full.
|
|
func (tab *Table) refresh() {
|
|
ld := -1 // logdist of chosen bucket
|
|
tab.mutex.Lock()
|
|
for i, b := range tab.buckets {
|
|
if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
|
|
ld = i
|
|
break
|
|
}
|
|
}
|
|
tab.mutex.Unlock()
|
|
|
|
result := tab.Lookup(randomID(tab.self.ID, ld))
|
|
if len(result) == 0 {
|
|
// bootstrap the table with a self lookup
|
|
tab.mutex.Lock()
|
|
tab.add(tab.nursery)
|
|
tab.mutex.Unlock()
|
|
tab.Lookup(tab.self.ID)
|
|
// TODO: the Kademlia paper says that we're supposed to perform
|
|
// random lookups in all buckets further away than our closest neighbor.
|
|
}
|
|
}
|
|
|
|
// closest returns the n nodes in the table that are closest to the
|
|
// given id. The caller must hold tab.mutex.
|
|
func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
|
|
// This is a very wasteful way to find the closest nodes but
|
|
// obviously correct. I believe that tree-based buckets would make
|
|
// this easier to implement efficiently.
|
|
close := &nodesByDistance{target: target}
|
|
for _, b := range tab.buckets {
|
|
for _, n := range b.entries {
|
|
close.push(n, nresults)
|
|
}
|
|
}
|
|
return close
|
|
}
|
|
|
|
func (tab *Table) len() (n int) {
|
|
for _, b := range tab.buckets {
|
|
n += len(b.entries)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// bumpOrAdd updates the activity timestamp for the given node and
|
|
// attempts to insert the node into a bucket. The returned Node might
|
|
// not be part of the table. The caller must hold tab.mutex.
|
|
func (tab *Table) bumpOrAdd(node NodeID, from *net.UDPAddr) (n *Node) {
|
|
b := tab.buckets[logdist(tab.self.ID, node)]
|
|
if n = b.bump(node); n == nil {
|
|
n = newNode(node, from)
|
|
if len(b.entries) == bucketSize {
|
|
tab.pingReplace(n, b)
|
|
} else {
|
|
b.entries = append(b.entries, n)
|
|
}
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (tab *Table) pingReplace(n *Node, b *bucket) {
|
|
old := b.entries[bucketSize-1]
|
|
go func() {
|
|
if err := tab.net.ping(old); err == nil {
|
|
// it responded, we don't need to replace it.
|
|
return
|
|
}
|
|
// it didn't respond, replace the node if it is still the oldest node.
|
|
tab.mutex.Lock()
|
|
if len(b.entries) > 0 && b.entries[len(b.entries)-1] == old {
|
|
// slide down other entries and put the new one in front.
|
|
// TODO: insert in correct position to keep the order
|
|
copy(b.entries[1:], b.entries)
|
|
b.entries[0] = n
|
|
}
|
|
tab.mutex.Unlock()
|
|
}()
|
|
}
|
|
|
|
// bump updates the activity timestamp for the given node.
|
|
// The caller must hold tab.mutex.
|
|
func (tab *Table) bump(node NodeID) {
|
|
tab.buckets[logdist(tab.self.ID, node)].bump(node)
|
|
}
|
|
|
|
// add puts the entries into the table if their corresponding
|
|
// bucket is not full. The caller must hold tab.mutex.
|
|
func (tab *Table) add(entries []*Node) {
|
|
outer:
|
|
for _, n := range entries {
|
|
if n == nil || n.ID == tab.self.ID {
|
|
// skip bad entries. The RLP decoder returns nil for empty
|
|
// input lists.
|
|
continue
|
|
}
|
|
bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
|
|
for i := range bucket.entries {
|
|
if bucket.entries[i].ID == n.ID {
|
|
// already in bucket
|
|
continue outer
|
|
}
|
|
}
|
|
if len(bucket.entries) < bucketSize {
|
|
bucket.entries = append(bucket.entries, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (b *bucket) bump(id NodeID) *Node {
|
|
for i, n := range b.entries {
|
|
if n.ID == id {
|
|
n.active = time.Now()
|
|
// move it to the front
|
|
copy(b.entries[1:], b.entries[:i+1])
|
|
b.entries[0] = n
|
|
return n
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// nodesByDistance is a list of nodes, ordered by
|
|
// distance to target.
|
|
type nodesByDistance struct {
|
|
entries []*Node
|
|
target NodeID
|
|
}
|
|
|
|
// push adds the given node to the list, keeping the total size below maxElems.
|
|
func (h *nodesByDistance) push(n *Node, maxElems int) {
|
|
ix := sort.Search(len(h.entries), func(i int) bool {
|
|
return distcmp(h.target, h.entries[i].ID, n.ID) > 0
|
|
})
|
|
if len(h.entries) < maxElems {
|
|
h.entries = append(h.entries, n)
|
|
}
|
|
if ix == len(h.entries) {
|
|
// farther away than all nodes we already have.
|
|
// if there was room for it, the node is now the last element.
|
|
} else {
|
|
// slide existing entries down to make room
|
|
// this will overwrite the entry we just appended.
|
|
copy(h.entries[ix+1:], h.entries[ix:])
|
|
h.entries[ix] = n
|
|
}
|
|
}
|