mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2024-12-26 21:47:18 +00:00
958 lines
30 KiB
Go
958 lines
30 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package vm
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"errors"
|
|
"math/big"
|
|
|
|
"github.com/holiman/uint256"
|
|
|
|
"github.com/ledgerwatch/turbo-geth/common"
|
|
"github.com/ledgerwatch/turbo-geth/common/math"
|
|
"github.com/ledgerwatch/turbo-geth/crypto"
|
|
"github.com/ledgerwatch/turbo-geth/crypto/blake2b"
|
|
"github.com/ledgerwatch/turbo-geth/crypto/bls12381"
|
|
"github.com/ledgerwatch/turbo-geth/crypto/bn256"
|
|
"github.com/ledgerwatch/turbo-geth/params"
|
|
|
|
//lint:ignore SA1019 Needed for precompile
|
|
"golang.org/x/crypto/ripemd160"
|
|
)
|
|
|
|
// PrecompiledContract is the basic interface for native Go contracts. The implementation
|
|
// requires a deterministic gas count based on the input size of the Run method of the
|
|
// contract.
|
|
type PrecompiledContract interface {
|
|
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
|
|
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
|
|
}
|
|
|
|
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Frontier and Homestead releases.
|
|
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
}
|
|
|
|
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Byzantium release.
|
|
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{5}): &bigModExp{},
|
|
common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
|
|
common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
|
|
common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
|
|
}
|
|
|
|
// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Istanbul release.
|
|
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{5}): &bigModExp{},
|
|
common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{9}): &blake2F{},
|
|
}
|
|
|
|
// PrecompiledContractsYoloV1 contains the default set of pre-compiled Ethereum
|
|
// contracts used in the Yolo v1 test release.
|
|
var PrecompiledContractsYoloV1 = map[common.Address]PrecompiledContract{
|
|
common.BytesToAddress([]byte{1}): &ecrecover{},
|
|
common.BytesToAddress([]byte{2}): &sha256hash{},
|
|
common.BytesToAddress([]byte{3}): &ripemd160hash{},
|
|
common.BytesToAddress([]byte{4}): &dataCopy{},
|
|
common.BytesToAddress([]byte{5}): &bigModExp{},
|
|
common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
|
|
common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
|
|
common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
|
|
common.BytesToAddress([]byte{9}): &blake2F{},
|
|
common.BytesToAddress([]byte{10}): &bls12381G1Add{},
|
|
common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
|
|
common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
|
|
common.BytesToAddress([]byte{13}): &bls12381G2Add{},
|
|
common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
|
|
common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
|
|
common.BytesToAddress([]byte{16}): &bls12381Pairing{},
|
|
common.BytesToAddress([]byte{17}): &bls12381MapG1{},
|
|
common.BytesToAddress([]byte{18}): &bls12381MapG2{},
|
|
}
|
|
|
|
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
|
|
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
|
|
gas := p.RequiredGas(input)
|
|
if contract.UseGas(gas) {
|
|
return p.Run(input)
|
|
}
|
|
return nil, ErrOutOfGas
|
|
}
|
|
|
|
// ECRECOVER implemented as a native contract.
|
|
type ecrecover struct{}
|
|
|
|
func (c *ecrecover) RequiredGas(input []byte) uint64 {
|
|
return params.EcrecoverGas
|
|
}
|
|
|
|
func (c *ecrecover) Run(input []byte) ([]byte, error) {
|
|
const ecRecoverInputLength = 128
|
|
|
|
input = common.RightPadBytes(input, ecRecoverInputLength)
|
|
// "input" is (hash, v, r, s), each 32 bytes
|
|
// but for ecrecover we want (r, s, v)
|
|
|
|
r := new(uint256.Int).SetBytes(input[64:96])
|
|
s := new(uint256.Int).SetBytes(input[96:128])
|
|
v := input[63] - 27
|
|
|
|
// tighter sig s values input homestead only apply to tx sigs
|
|
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
|
|
return nil, nil
|
|
}
|
|
// We must make sure not to modify the 'input', so placing the 'v' along with
|
|
// the signature needs to be done on a new allocation
|
|
sig := make([]byte, 65)
|
|
copy(sig, input[64:128])
|
|
sig[64] = v
|
|
// v needs to be at the end for libsecp256k1
|
|
pubKey, err := crypto.Ecrecover(input[:32], sig)
|
|
// make sure the public key is a valid one
|
|
if err != nil {
|
|
return nil, nil
|
|
}
|
|
|
|
// the first byte of pubkey is bitcoin heritage
|
|
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
|
|
}
|
|
|
|
// SHA256 implemented as a native contract.
|
|
type sha256hash struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *sha256hash) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
|
|
}
|
|
func (c *sha256hash) Run(input []byte) ([]byte, error) {
|
|
h := sha256.Sum256(input)
|
|
return h[:], nil
|
|
}
|
|
|
|
// RIPEMD160 implemented as a native contract.
|
|
type ripemd160hash struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
|
|
}
|
|
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
|
|
ripemd := ripemd160.New()
|
|
ripemd.Write(input)
|
|
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
|
|
}
|
|
|
|
// data copy implemented as a native contract.
|
|
type dataCopy struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
//
|
|
// This method does not require any overflow checking as the input size gas costs
|
|
// required for anything significant is so high it's impossible to pay for.
|
|
func (c *dataCopy) RequiredGas(input []byte) uint64 {
|
|
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
|
|
}
|
|
func (c *dataCopy) Run(in []byte) ([]byte, error) {
|
|
return in, nil
|
|
}
|
|
|
|
// bigModExp implements a native big integer exponential modular operation.
|
|
type bigModExp struct{}
|
|
|
|
var (
|
|
big1 = big.NewInt(1)
|
|
big4 = big.NewInt(4)
|
|
big8 = big.NewInt(8)
|
|
big16 = big.NewInt(16)
|
|
big32 = big.NewInt(32)
|
|
big64 = big.NewInt(64)
|
|
big96 = big.NewInt(96)
|
|
big480 = big.NewInt(480)
|
|
big1024 = big.NewInt(1024)
|
|
big3072 = big.NewInt(3072)
|
|
big199680 = big.NewInt(199680)
|
|
)
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bigModExp) RequiredGas(input []byte) uint64 {
|
|
var (
|
|
baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
|
|
expLen = new(big.Int).SetBytes(getData(input, 32, 32))
|
|
modLen = new(big.Int).SetBytes(getData(input, 64, 32))
|
|
)
|
|
if len(input) > 96 {
|
|
input = input[96:]
|
|
} else {
|
|
input = input[:0]
|
|
}
|
|
// Retrieve the head 32 bytes of exp for the adjusted exponent length
|
|
var expHead *big.Int
|
|
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
|
|
expHead = new(big.Int)
|
|
} else {
|
|
if expLen.Cmp(big32) > 0 {
|
|
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
|
|
} else {
|
|
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
|
|
}
|
|
}
|
|
// Calculate the adjusted exponent length
|
|
var msb int
|
|
if bitlen := expHead.BitLen(); bitlen > 0 {
|
|
msb = bitlen - 1
|
|
}
|
|
adjExpLen := new(big.Int)
|
|
if expLen.Cmp(big32) > 0 {
|
|
adjExpLen.Sub(expLen, big32)
|
|
adjExpLen.Mul(big8, adjExpLen)
|
|
}
|
|
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
|
|
|
|
// Calculate the gas cost of the operation
|
|
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
|
|
switch {
|
|
case gas.Cmp(big64) <= 0:
|
|
gas.Mul(gas, gas)
|
|
case gas.Cmp(big1024) <= 0:
|
|
gas = new(big.Int).Add(
|
|
new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
|
|
new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
|
|
)
|
|
default:
|
|
gas = new(big.Int).Add(
|
|
new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
|
|
new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
|
|
)
|
|
}
|
|
gas.Mul(gas, math.BigMax(adjExpLen, big1))
|
|
gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
|
|
|
|
if gas.BitLen() > 64 {
|
|
return math.MaxUint64
|
|
}
|
|
return gas.Uint64()
|
|
}
|
|
|
|
func (c *bigModExp) Run(input []byte) ([]byte, error) {
|
|
var (
|
|
baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
|
|
expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
|
|
modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
|
|
)
|
|
if len(input) > 96 {
|
|
input = input[96:]
|
|
} else {
|
|
input = input[:0]
|
|
}
|
|
// Handle a special case when both the base and mod length is zero
|
|
if baseLen == 0 && modLen == 0 {
|
|
return []byte{}, nil
|
|
}
|
|
// Retrieve the operands and execute the exponentiation
|
|
var (
|
|
base = new(big.Int).SetBytes(getData(input, 0, baseLen))
|
|
exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
|
|
mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
|
|
)
|
|
if mod.BitLen() == 0 {
|
|
// Modulo 0 is undefined, return zero
|
|
return common.LeftPadBytes([]byte{}, int(modLen)), nil
|
|
}
|
|
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
|
|
}
|
|
|
|
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
|
|
// returning it, or an error if the point is invalid.
|
|
func newCurvePoint(blob []byte) (*bn256.G1, error) {
|
|
p := new(bn256.G1)
|
|
if _, err := p.Unmarshal(blob); err != nil {
|
|
return nil, err
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
|
|
// returning it, or an error if the point is invalid.
|
|
func newTwistPoint(blob []byte) (*bn256.G2, error) {
|
|
p := new(bn256.G2)
|
|
if _, err := p.Unmarshal(blob); err != nil {
|
|
return nil, err
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
// runBn256Add implements the Bn256Add precompile, referenced by both
|
|
// Byzantium and Istanbul operations.
|
|
func runBn256Add(input []byte) ([]byte, error) {
|
|
x, err := newCurvePoint(getData(input, 0, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
y, err := newCurvePoint(getData(input, 64, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
res := new(bn256.G1)
|
|
res.Add(x, y)
|
|
return res.Marshal(), nil
|
|
}
|
|
|
|
// bn256Add implements a native elliptic curve point addition conforming to
|
|
// Istanbul consensus rules.
|
|
type bn256AddIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256AddGasIstanbul
|
|
}
|
|
|
|
func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256Add(input)
|
|
}
|
|
|
|
// bn256AddByzantium implements a native elliptic curve point addition
|
|
// conforming to Byzantium consensus rules.
|
|
type bn256AddByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256AddGasByzantium
|
|
}
|
|
|
|
func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256Add(input)
|
|
}
|
|
|
|
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
|
|
// both Byzantium and Istanbul operations.
|
|
func runBn256ScalarMul(input []byte) ([]byte, error) {
|
|
p, err := newCurvePoint(getData(input, 0, 64))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
res := new(bn256.G1)
|
|
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
|
|
return res.Marshal(), nil
|
|
}
|
|
|
|
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
|
|
// multiplication conforming to Istanbul consensus rules.
|
|
type bn256ScalarMulIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256ScalarMulGasIstanbul
|
|
}
|
|
|
|
func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256ScalarMul(input)
|
|
}
|
|
|
|
// bn256ScalarMulByzantium implements a native elliptic curve scalar
|
|
// multiplication conforming to Byzantium consensus rules.
|
|
type bn256ScalarMulByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256ScalarMulGasByzantium
|
|
}
|
|
|
|
func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256ScalarMul(input)
|
|
}
|
|
|
|
var (
|
|
// true32Byte is returned if the bn256 pairing check succeeds.
|
|
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
|
|
|
|
// false32Byte is returned if the bn256 pairing check fails.
|
|
false32Byte = make([]byte, 32)
|
|
|
|
// errBadPairingInput is returned if the bn256 pairing input is invalid.
|
|
errBadPairingInput = errors.New("bad elliptic curve pairing size")
|
|
)
|
|
|
|
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
|
|
// Byzantium and Istanbul operations.
|
|
func runBn256Pairing(input []byte) ([]byte, error) {
|
|
// Handle some corner cases cheaply
|
|
if len(input)%192 > 0 {
|
|
return nil, errBadPairingInput
|
|
}
|
|
// Convert the input into a set of coordinates
|
|
var (
|
|
cs []*bn256.G1
|
|
ts []*bn256.G2
|
|
)
|
|
for i := 0; i < len(input); i += 192 {
|
|
c, err := newCurvePoint(input[i : i+64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
t, err := newTwistPoint(input[i+64 : i+192])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
cs = append(cs, c)
|
|
ts = append(ts, t)
|
|
}
|
|
// Execute the pairing checks and return the results
|
|
if bn256.PairingCheck(cs, ts) {
|
|
return true32Byte, nil
|
|
}
|
|
return false32Byte, nil
|
|
}
|
|
|
|
// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
|
|
// conforming to Istanbul consensus rules.
|
|
type bn256PairingIstanbul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
|
|
}
|
|
|
|
func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
|
|
return runBn256Pairing(input)
|
|
}
|
|
|
|
// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
|
|
// conforming to Byzantium consensus rules.
|
|
type bn256PairingByzantium struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
|
|
return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
|
|
}
|
|
|
|
func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
|
|
return runBn256Pairing(input)
|
|
}
|
|
|
|
type blake2F struct{}
|
|
|
|
func (c *blake2F) RequiredGas(input []byte) uint64 {
|
|
// If the input is malformed, we can't calculate the gas, return 0 and let the
|
|
// actual call choke and fault.
|
|
if len(input) != blake2FInputLength {
|
|
return 0
|
|
}
|
|
return uint64(binary.BigEndian.Uint32(input[0:4]))
|
|
}
|
|
|
|
const (
|
|
blake2FInputLength = 213
|
|
blake2FFinalBlockBytes = byte(1)
|
|
blake2FNonFinalBlockBytes = byte(0)
|
|
)
|
|
|
|
var (
|
|
errBlake2FInvalidInputLength = errors.New("invalid input length")
|
|
errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
|
|
)
|
|
|
|
func (c *blake2F) Run(input []byte) ([]byte, error) {
|
|
// Make sure the input is valid (correct length and final flag)
|
|
if len(input) != blake2FInputLength {
|
|
return nil, errBlake2FInvalidInputLength
|
|
}
|
|
if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
|
|
return nil, errBlake2FInvalidFinalFlag
|
|
}
|
|
// Parse the input into the Blake2b call parameters
|
|
var (
|
|
rounds = binary.BigEndian.Uint32(input[0:4])
|
|
final = (input[212] == blake2FFinalBlockBytes)
|
|
|
|
h [8]uint64
|
|
m [16]uint64
|
|
t [2]uint64
|
|
)
|
|
for i := 0; i < 8; i++ {
|
|
offset := 4 + i*8
|
|
h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
|
|
}
|
|
for i := 0; i < 16; i++ {
|
|
offset := 68 + i*8
|
|
m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
|
|
}
|
|
t[0] = binary.LittleEndian.Uint64(input[196:204])
|
|
t[1] = binary.LittleEndian.Uint64(input[204:212])
|
|
|
|
// Execute the compression function, extract and return the result
|
|
blake2b.F(&h, m, t, final, rounds)
|
|
|
|
output := make([]byte, 64)
|
|
for i := 0; i < 8; i++ {
|
|
offset := i * 8
|
|
binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
|
|
}
|
|
return output, nil
|
|
}
|
|
|
|
var (
|
|
errBLS12381InvalidInputLength = errors.New("invalid input length")
|
|
errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
|
|
errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup")
|
|
errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup")
|
|
)
|
|
|
|
// bls12381G1Add implements EIP-2537 G1Add precompile.
|
|
type bls12381G1Add struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G1AddGas
|
|
}
|
|
|
|
func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1Add precompile.
|
|
// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
|
|
// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
|
|
if len(input) != 256 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0, p1 *bls12381.PointG1
|
|
|
|
// Initialize G1
|
|
g := bls12381.NewG1()
|
|
|
|
// Decode G1 point p_0
|
|
if p0, err = g.DecodePoint(input[:128]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G1 point p_1
|
|
if p1, err = g.DecodePoint(input[128:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Compute r = p_0 + p_1
|
|
r := g.New()
|
|
g.Add(r, p0, p1)
|
|
|
|
// Encode the G1 point result into 128 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381G1Mul implements EIP-2537 G1Mul precompile.
|
|
type bls12381G1Mul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G1MulGas
|
|
}
|
|
|
|
func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1Mul precompile.
|
|
// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
|
|
if len(input) != 160 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0 *bls12381.PointG1
|
|
|
|
// Initialize G1
|
|
g := bls12381.NewG1()
|
|
|
|
// Decode G1 point
|
|
if p0, err = g.DecodePoint(input[:128]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode scalar value
|
|
e := new(big.Int).SetBytes(input[128:])
|
|
|
|
// Compute r = e * p_0
|
|
r := g.New()
|
|
g.MulScalar(r, p0, e)
|
|
|
|
// Encode the G1 point into 128 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
|
|
type bls12381G1MultiExp struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
|
|
// Calculate G1 point, scalar value pair length
|
|
k := len(input) / 160
|
|
if k == 0 {
|
|
// Return 0 gas for small input length
|
|
return 0
|
|
}
|
|
// Lookup discount value for G1 point, scalar value pair length
|
|
maxDiscountLen := len(params.Bls12381MultiExpDiscountTable)
|
|
if k > maxDiscountLen {
|
|
k = maxDiscountLen
|
|
}
|
|
discount := params.Bls12381MultiExpDiscountTable[k-1]
|
|
// Calculate gas and return the result
|
|
return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
|
|
}
|
|
|
|
func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G1MultiExp precompile.
|
|
// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
|
|
// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
|
|
k := len(input) / 160
|
|
if len(input) == 0 || len(input)%160 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
points := make([]*bls12381.PointG1, k)
|
|
scalars := make([]*big.Int, k)
|
|
|
|
// Initialize G1
|
|
g := bls12381.NewG1()
|
|
|
|
// Decode point scalar pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 160 * i
|
|
t0, t1, t2 := off, off+128, off+160
|
|
// Decode G1 point
|
|
if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode scalar value
|
|
scalars[i] = new(big.Int).SetBytes(input[t1:t2])
|
|
}
|
|
|
|
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
|
|
r := g.New()
|
|
if _, err = g.MultiExp(r, points, scalars); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G1 point to 128 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381G2Add implements EIP-2537 G2Add precompile.
|
|
type bls12381G2Add struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G2AddGas
|
|
}
|
|
|
|
func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2Add precompile.
|
|
// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
|
|
// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
|
|
if len(input) != 512 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0, p1 *bls12381.PointG2
|
|
|
|
// Initialize G2
|
|
g := bls12381.NewG2()
|
|
r := g.New()
|
|
|
|
// Decode G2 point p_0
|
|
if p0, err = g.DecodePoint(input[:256]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G2 point p_1
|
|
if p1, err = g.DecodePoint(input[256:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Compute r = p_0 + p_1
|
|
g.Add(r, p0, p1)
|
|
|
|
// Encode the G2 point into 256 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381G2Mul implements EIP-2537 G2Mul precompile.
|
|
type bls12381G2Mul struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381G2MulGas
|
|
}
|
|
|
|
func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2MUL precompile logic.
|
|
// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
|
|
if len(input) != 288 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
var p0 *bls12381.PointG2
|
|
|
|
// Initialize G2
|
|
g := bls12381.NewG2()
|
|
|
|
// Decode G2 point
|
|
if p0, err = g.DecodePoint(input[:256]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode scalar value
|
|
e := new(big.Int).SetBytes(input[256:])
|
|
|
|
// Compute r = e * p_0
|
|
r := g.New()
|
|
g.MulScalar(r, p0, e)
|
|
|
|
// Encode the G2 point into 256 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
|
|
type bls12381G2MultiExp struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
|
|
// Calculate G2 point, scalar value pair length
|
|
k := len(input) / 288
|
|
if k == 0 {
|
|
// Return 0 gas for small input length
|
|
return 0
|
|
}
|
|
// Lookup discount value for G2 point, scalar value pair length
|
|
maxDiscountLen := len(params.Bls12381MultiExpDiscountTable)
|
|
if k > maxDiscountLen {
|
|
k = maxDiscountLen
|
|
}
|
|
discount := params.Bls12381MultiExpDiscountTable[k-1]
|
|
// Calculate gas and return the result
|
|
return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
|
|
}
|
|
|
|
func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 G2MultiExp precompile logic
|
|
// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
|
|
// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
|
|
k := len(input) / 288
|
|
if len(input) == 0 || len(input)%288 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
var err error
|
|
points := make([]*bls12381.PointG2, k)
|
|
scalars := make([]*big.Int, k)
|
|
|
|
// Initialize G2
|
|
g := bls12381.NewG2()
|
|
|
|
// Decode point scalar pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 288 * i
|
|
t0, t1, t2 := off, off+256, off+288
|
|
// Decode G1 point
|
|
if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode scalar value
|
|
scalars[i] = new(big.Int).SetBytes(input[t1:t2])
|
|
}
|
|
|
|
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
|
|
r := g.New()
|
|
if _, err := g.MultiExp(r, points, scalars); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G2 point to 256 bytes.
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381Pairing implements EIP-2537 Pairing precompile.
|
|
type bls12381Pairing struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
|
|
}
|
|
|
|
func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Pairing precompile logic.
|
|
// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
|
|
// > - `128` bytes of G1 point encoding
|
|
// > - `256` bytes of G2 point encoding
|
|
// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
|
|
// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
|
|
k := len(input) / 384
|
|
if len(input) == 0 || len(input)%384 != 0 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
// Initialize BLS12-381 pairing engine
|
|
e := bls12381.NewPairingEngine()
|
|
g1, g2 := e.G1, e.G2
|
|
|
|
// Decode pairs
|
|
for i := 0; i < k; i++ {
|
|
off := 384 * i
|
|
t0, t1, t2 := off, off+128, off+384
|
|
|
|
// Decode G1 point
|
|
p1, err := g1.DecodePoint(input[t0:t1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Decode G2 point
|
|
p2, err := g2.DecodePoint(input[t1:t2])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// 'point is on curve' check already done,
|
|
// Here we need to apply subgroup checks.
|
|
if !g1.InCorrectSubgroup(p1) {
|
|
return nil, errBLS12381G1PointSubgroup
|
|
}
|
|
if !g2.InCorrectSubgroup(p2) {
|
|
return nil, errBLS12381G2PointSubgroup
|
|
}
|
|
|
|
// Update pairing engine with G1 and G2 ponits
|
|
e.AddPair(p1, p2)
|
|
}
|
|
// Prepare 32 byte output
|
|
out := make([]byte, 32)
|
|
|
|
// Compute pairing and set the result
|
|
if e.Check() {
|
|
out[31] = 1
|
|
}
|
|
return out, nil
|
|
}
|
|
|
|
// decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
|
|
// Removes top 16 bytes of 64 byte input.
|
|
func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
|
|
if len(in) != 64 {
|
|
return nil, errors.New("invalid field element length")
|
|
}
|
|
// check top bytes
|
|
for i := 0; i < 16; i++ {
|
|
if in[i] != byte(0x00) {
|
|
return nil, errBLS12381InvalidFieldElementTopBytes
|
|
}
|
|
}
|
|
out := make([]byte, 48)
|
|
copy(out[:], in[16:])
|
|
return out, nil
|
|
}
|
|
|
|
// bls12381MapG1 implements EIP-2537 MapG1 precompile.
|
|
type bls12381MapG1 struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381MapG1Gas
|
|
}
|
|
|
|
func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Map_To_G1 precompile.
|
|
// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
|
|
// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
|
|
if len(input) != 64 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
// Decode input field element
|
|
fe, err := decodeBLS12381FieldElement(input)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Initialize G1
|
|
g := bls12381.NewG1()
|
|
|
|
// Compute mapping
|
|
r, err := g.MapToCurve(fe)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G1 point to 128 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|
|
|
|
// bls12381MapG2 implements EIP-2537 MapG2 precompile.
|
|
type bls12381MapG2 struct{}
|
|
|
|
// RequiredGas returns the gas required to execute the pre-compiled contract.
|
|
func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
|
|
return params.Bls12381MapG2Gas
|
|
}
|
|
|
|
func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
|
|
// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
|
|
// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
|
|
// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
|
|
if len(input) != 128 {
|
|
return nil, errBLS12381InvalidInputLength
|
|
}
|
|
|
|
// Decode input field element
|
|
fe := make([]byte, 96)
|
|
c0, err := decodeBLS12381FieldElement(input[:64])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
copy(fe[48:], c0)
|
|
c1, err := decodeBLS12381FieldElement(input[64:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
copy(fe[:48], c1)
|
|
|
|
// Initialize G2
|
|
g := bls12381.NewG2()
|
|
|
|
// Compute mapping
|
|
r, err := g.MapToCurve(fe)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encode the G2 point to 256 bytes
|
|
return g.EncodePoint(r), nil
|
|
}
|