erigon-pulse/core/state_transition.go
2022-08-10 19:04:13 +07:00

492 lines
16 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math/bits"
"github.com/ledgerwatch/erigon/consensus"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon/common"
cmath "github.com/ledgerwatch/erigon/common/math"
"github.com/ledgerwatch/erigon/core/types"
"github.com/ledgerwatch/erigon/core/vm"
"github.com/ledgerwatch/erigon/crypto"
"github.com/ledgerwatch/erigon/params"
)
var emptyCodeHash = crypto.Keccak256Hash(nil)
/*
The State Transitioning Model
A state transition is a change made when a transaction is applied to the current world state
The state transitioning model does all the necessary work to work out a valid new state root.
1) Nonce handling
2) Pre pay gas
3) Create a new state object if the recipient is \0*32
4) Value transfer
== If contract creation ==
4a) Attempt to run transaction data
4b) If valid, use result as code for the new state object
== end ==
5) Run Script section
6) Derive new state root
*/
type StateTransition struct {
gp *GasPool
msg Message
gas uint64
gasPrice *uint256.Int
gasFeeCap *uint256.Int
tip *uint256.Int
initialGas uint64
value *uint256.Int
data []byte
state vm.IntraBlockState
evm vm.VMInterface
//some pre-allocated intermediate variables
sharedBuyGas *uint256.Int
sharedBuyGasBalance *uint256.Int
isParlia bool
isBor bool
}
// Message represents a message sent to a contract.
type Message interface {
From() common.Address
To() *common.Address
GasPrice() *uint256.Int
FeeCap() *uint256.Int
Tip() *uint256.Int
Gas() uint64
Value() *uint256.Int
Nonce() uint64
CheckNonce() bool
Data() []byte
AccessList() types.AccessList
}
// ExecutionResult includes all output after executing given evm
// message no matter the execution itself is successful or not.
type ExecutionResult struct {
UsedGas uint64 // Total used gas but include the refunded gas
Err error // Any error encountered during the execution(listed in core/vm/errors.go)
ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
}
// Unwrap returns the internal evm error which allows us for further
// analysis outside.
func (result *ExecutionResult) Unwrap() error {
return result.Err
}
// Failed returns the indicator whether the execution is successful or not
func (result *ExecutionResult) Failed() bool { return result.Err != nil }
// Return is a helper function to help caller distinguish between revert reason
// and function return. Return returns the data after execution if no error occurs.
func (result *ExecutionResult) Return() []byte {
if result.Err != nil {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// Revert returns the concrete revert reason if the execution is aborted by `REVERT`
// opcode. Note the reason can be nil if no data supplied with revert opcode.
func (result *ExecutionResult) Revert() []byte {
if result.Err != vm.ErrExecutionReverted {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
func IntrinsicGas(data []byte, accessList types.AccessList, isContractCreation bool, isHomestead, isEIP2028 bool) (uint64, error) {
// Set the starting gas for the raw transaction
var gas uint64
if isContractCreation && isHomestead {
gas = params.TxGasContractCreation
} else {
gas = params.TxGas
}
// Auxiliary variables for overflow protection
var product, overflow uint64
// Bump the required gas by the amount of transactional data
if len(data) > 0 {
// Zero and non-zero bytes are priced differently
var nz uint64
for _, byt := range data {
if byt != 0 {
nz++
}
}
// Make sure we don't exceed uint64 for all data combinations
nonZeroGas := params.TxDataNonZeroGasFrontier
if isEIP2028 {
nonZeroGas = params.TxDataNonZeroGasEIP2028
}
overflow, product = bits.Mul64(nz, nonZeroGas)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
gas, overflow = bits.Add64(gas, product, 0)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
z := uint64(len(data)) - nz
overflow, product = bits.Mul64(z, params.TxDataZeroGas)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
gas, overflow = bits.Add64(gas, product, 0)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
}
if accessList != nil {
overflow, product = bits.Mul64(uint64(len(accessList)), params.TxAccessListAddressGas)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
gas, overflow = bits.Add64(gas, product, 0)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
overflow, product = bits.Mul64(uint64(accessList.StorageKeys()), params.TxAccessListStorageKeyGas)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
gas, overflow = bits.Add64(gas, product, 0)
if overflow != 0 {
return 0, ErrGasUintOverflow
}
}
return gas, nil
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(evm vm.VMInterface, msg Message, gp *GasPool) *StateTransition {
isParlia := evm.ChainConfig().Parlia != nil
isBor := evm.ChainConfig().Bor != nil
return &StateTransition{
gp: gp,
evm: evm,
msg: msg,
gasPrice: msg.GasPrice(),
gasFeeCap: msg.FeeCap(),
tip: msg.Tip(),
value: msg.Value(),
data: msg.Data(),
state: evm.IntraBlockState(),
sharedBuyGas: uint256.NewInt(0),
sharedBuyGasBalance: uint256.NewInt(0),
isParlia: isParlia,
isBor: isBor,
}
}
// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
// `refunds` is false when it is not required to apply gas refunds
// `gasBailout` is true when it is not required to fail transaction if the balance is not enough to pay gas.
// for trace_call to replicate OE/Pariry behaviour
func ApplyMessage(evm vm.VMInterface, msg Message, gp *GasPool, refunds bool, gasBailout bool) (*ExecutionResult, error) {
return NewStateTransition(evm, msg, gp).TransitionDb(refunds, gasBailout)
}
// to returns the recipient of the message.
func (st *StateTransition) to() common.Address {
if st.msg == nil || st.msg.To() == nil /* contract creation */ {
return common.Address{}
}
return *st.msg.To()
}
func (st *StateTransition) buyGas(gasBailout bool) error {
mgval := st.sharedBuyGas
mgval.SetUint64(st.msg.Gas())
mgval, overflow := mgval.MulOverflow(mgval, st.gasPrice)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
balanceCheck := mgval
if st.gasFeeCap != nil {
balanceCheck = st.sharedBuyGasBalance.SetUint64(st.msg.Gas())
balanceCheck, overflow = balanceCheck.MulOverflow(balanceCheck, st.gasFeeCap)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
balanceCheck, overflow = balanceCheck.AddOverflow(balanceCheck, st.value)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
}
var subBalance = false
if have, want := st.state.GetBalance(st.msg.From()), balanceCheck; have.Cmp(want) < 0 {
if !gasBailout {
return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From().Hex(), have, want)
}
} else {
subBalance = true
}
if err := st.gp.SubGas(st.msg.Gas()); err != nil {
if !gasBailout {
return err
}
}
st.gas += st.msg.Gas()
st.initialGas = st.msg.Gas()
if subBalance {
st.state.SubBalance(st.msg.From(), mgval)
}
return nil
}
func CheckEip1559TxGasFeeCap(from common.Address, gasFeeCap, tip, baseFee *uint256.Int) error {
if gasFeeCap.Cmp(tip) < 0 {
return fmt.Errorf("%w: address %v, tip: %s, gasFeeCap: %s", ErrTipAboveFeeCap,
from.Hex(), gasFeeCap, tip)
}
if baseFee != nil && gasFeeCap.Cmp(baseFee) < 0 {
return fmt.Errorf("%w: address %v, gasFeeCap: %s baseFee: %s", ErrFeeCapTooLow,
from.Hex(), gasFeeCap, baseFee)
}
return nil
}
// DESCRIBED: docs/programmers_guide/guide.md#nonce
func (st *StateTransition) preCheck(gasBailout bool) error {
// Make sure this transaction's nonce is correct.
if st.msg.CheckNonce() {
stNonce := st.state.GetNonce(st.msg.From())
if msgNonce := st.msg.Nonce(); stNonce < msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce > msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce+1 < stNonce {
return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
st.msg.From().Hex(), stNonce)
}
// Make sure the sender is an EOA (EIP-3607)
if codeHash := st.state.GetCodeHash(st.msg.From()); codeHash != emptyCodeHash && codeHash != (common.Hash{}) {
// common.Hash{} means that the sender is not in the state.
// Historically there were transactions with 0 gas price and non-existing sender,
// so we have to allow that.
return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
st.msg.From().Hex(), codeHash)
}
}
// Make sure the transaction gasFeeCap is greater than the block's baseFee.
if st.evm.ChainRules().IsLondon {
// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
if !st.evm.Config().NoBaseFee || !st.gasFeeCap.IsZero() || !st.tip.IsZero() {
if err := CheckEip1559TxGasFeeCap(st.msg.From(), st.gasFeeCap, st.tip, st.evm.Context().BaseFee); err != nil {
return err
}
}
}
return st.buyGas(gasBailout)
}
// TransitionDb will transition the state by applying the current message and
// returning the evm execution result with following fields.
//
// - used gas:
// total gas used (including gas being refunded)
// - returndata:
// the returned data from evm
// - concrete execution error:
// various **EVM** error which aborts the execution,
// e.g. ErrOutOfGas, ErrExecutionReverted
//
// However if any consensus issue encountered, return the error directly with
// nil evm execution result.
func (st *StateTransition) TransitionDb(refunds bool, gasBailout bool) (*ExecutionResult, error) {
var input1 *uint256.Int
var input2 *uint256.Int
if st.isBor {
input1 = st.state.GetBalance(st.msg.From()).Clone()
input2 = st.state.GetBalance(st.evm.Context().Coinbase).Clone()
}
// First check this message satisfies all consensus rules before
// applying the message. The rules include these clauses
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
// BSC always gave gas bailout due to system transactions that set 2^256/2 gas limit and
// for Parlia consensus this flag should be always be set
if st.isParlia {
gasBailout = true
}
// Check clauses 1-3 and 6, buy gas if everything is correct
if err := st.preCheck(gasBailout); err != nil {
return nil, err
}
msg := st.msg
sender := vm.AccountRef(msg.From())
homestead := st.evm.ChainRules().IsHomestead
istanbul := st.evm.ChainRules().IsIstanbul
london := st.evm.ChainRules().IsLondon
contractCreation := msg.To() == nil
// Check clauses 4-5, subtract intrinsic gas if everything is correct
gas, err := IntrinsicGas(st.data, st.msg.AccessList(), contractCreation, homestead, istanbul)
if err != nil {
return nil, err
}
if st.gas < gas {
return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gas, gas)
}
st.gas -= gas
var bailout bool
// Gas bailout (for trace_call) should only be applied if there is not sufficient balance to perform value transfer
if gasBailout {
if !msg.Value().IsZero() && !st.evm.Context().CanTransfer(st.state, msg.From(), msg.Value()) {
bailout = true
}
}
// Set up the initial access list.
if st.evm.ChainRules().IsBerlin {
st.state.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(st.evm.ChainRules()), msg.AccessList())
}
var (
ret []byte
vmerr error // vm errors do not effect consensus and are therefore not assigned to err
)
if contractCreation {
// The reason why we don't increment nonce here is that we need the original
// nonce to calculate the address of the contract that is being created
// It does get incremented inside the `Create` call, after the computation
// of the contract's address, but before the execution of the code.
ret, _, st.gas, vmerr = st.evm.Create(sender, st.data, st.gas, st.value)
} else {
// Increment the nonce for the next transaction
st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)
ret, st.gas, vmerr = st.evm.Call(sender, st.to(), st.data, st.gas, st.value, bailout)
}
if refunds {
if london {
// After EIP-3529: refunds are capped to gasUsed / 5
st.refundGas(params.RefundQuotientEIP3529)
} else {
// Before EIP-3529: refunds were capped to gasUsed / 2
st.refundGas(params.RefundQuotient)
}
}
effectiveTip := st.gasPrice
if london {
effectiveTip = cmath.Min256(st.tip, new(uint256.Int).Sub(st.gasFeeCap, st.evm.Context().BaseFee))
}
amount := new(uint256.Int).SetUint64(st.gasUsed())
amount.Mul(amount, effectiveTip) // gasUsed * effectiveTip = how much goes to the block producer (miner, validator)
if st.isParlia {
st.state.AddBalance(consensus.SystemAddress, amount)
} else {
st.state.AddBalance(st.evm.Context().Coinbase, amount)
}
if st.isBor {
if london {
burntContractAddress := common.HexToAddress(st.evm.ChainConfig().Bor.CalculateBurntContract(st.evm.Context().BlockNumber))
burnAmount := new(uint256.Int).Mul(new(uint256.Int).SetUint64(st.gasUsed()), st.evm.Context().BaseFee)
st.state.AddBalance(burntContractAddress, burnAmount)
}
// Deprecating transfer log and will be removed in future fork. PLEASE DO NOT USE this transfer log going forward. Parameters won't get updated as expected going forward with EIP1559
// add transfer log
output1 := input1.Clone()
output2 := input2.Clone()
AddFeeTransferLog(
st.state,
msg.From(),
st.evm.Context().Coinbase,
amount,
input1,
input2,
output1.Sub(output1, amount),
output2.Add(output2, amount),
)
}
return &ExecutionResult{
UsedGas: st.gasUsed(),
Err: vmerr,
ReturnData: ret,
}, nil
}
func (st *StateTransition) refundGas(refundQuotient uint64) {
// Apply refund counter, capped to half of the used gas.
refund := st.gasUsed() / refundQuotient
if refund > st.state.GetRefund() {
refund = st.state.GetRefund()
}
st.gas += refund
// Return ETH for remaining gas, exchanged at the original rate.
remaining := new(uint256.Int).Mul(new(uint256.Int).SetUint64(st.gas), st.gasPrice)
st.state.AddBalance(st.msg.From(), remaining)
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
st.gp.AddGas(st.gas)
}
// gasUsed returns the amount of gas used up by the state transition.
func (st *StateTransition) gasUsed() uint64 {
return st.initialGas - st.gas
}