erigon-pulse/trie/node.go
Alex Sharov 02dd405e93
MGR Schedule v0 (#550)
* MGR Make Schedule v0
2020-05-15 15:58:36 +07:00

369 lines
9.1 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"io"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/rlp"
)
const codeSizeUncached = -1
var indices = []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "[17]"}
type node interface {
print(io.Writer)
fstring(string) string
// if not empty, returns node's RLP or hash thereof
reference() []byte
witnessLen() uint64
}
type (
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
fullNode struct {
ref nodeRef
Children [17]node // Actual trie node data to encode/decode (needs custom encoder)
witnessLength uint64 // amount of bytes holded in DB by all storage/code under this prefix. equal to sum of children's witnessLength
}
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
duoNode struct {
ref nodeRef
mask uint32 // Bitmask. The set bits indicate the child is not nil
child1 node
child2 node
witnessLength uint64
}
// DESCRIBED: docs/programmers_guide/guide.md#hexary-radix-patricia-tree
shortNode struct {
ref nodeRef
Key []byte // HEX encoding
Val node
witnessLength uint64
}
hashNode struct {
hash []byte
witnessLength uint64
}
valueNode []byte
accountNode struct {
accounts.Account
storage node
rootCorrect bool
code codeNode
codeSize int
}
codeNode []byte
)
// nilValueNode is used when collapsing internal trie nodes for hashing, since
// unset children need to serialize correctly.
var nilValueNode = valueNode(nil)
func NewShortNode(key []byte, value node) *shortNode {
return &shortNode{
Key: key,
Val: value,
witnessLength: 1 + uint64(1)/2 + value.witnessLen(), //opcode + len(key)/2 + childrenWitnessLen
}
}
func EncodeAsValue(data []byte) ([]byte, error) {
tmp := new(bytes.Buffer)
if err := rlp.Encode(tmp, valueNode(data)); err != nil {
return nil, err
}
return tmp.Bytes(), nil
}
// EncodeRLP encodes a full node into the consensus RLP format.
func (n *fullNode) EncodeRLP(w io.Writer) error {
var nodes [17]node
for i, child := range &n.Children {
if child != nil {
nodes[i] = child
} else {
nodes[i] = nilValueNode
}
}
return rlp.Encode(w, nodes)
}
func (n *duoNode) EncodeRLP(w io.Writer) error {
var children [17]node
i1, i2 := n.childrenIdx()
children[i1] = n.child1
children[i2] = n.child2
for i := 0; i < 17; i++ {
if i != int(i1) && i != int(i2) {
children[i] = valueNode(nil)
}
}
return rlp.Encode(w, children)
}
func (n *duoNode) childrenIdx() (i1 byte, i2 byte) {
child := 1
var m uint32 = 1
for i := 0; i < 17; i++ {
if (n.mask & m) > 0 {
if child == 1 {
i1 = byte(i)
child = 2
} else if child == 2 {
i2 = byte(i)
break
}
}
m <<= 1
}
return i1, i2
}
func (n *fullNode) copy() *fullNode {
c := *n
return &c
}
func (n *fullNode) mask() uint32 {
var m uint32
for i, child := range n.Children {
if child != nil {
m |= (uint32(1) << uint(i))
}
}
return m
}
func (n *fullNode) duoCopy() *duoNode {
c := duoNode{}
first := true
for i, child := range n.Children {
if child == nil {
continue
}
if first {
first = false
c.mask |= (uint32(1) << uint(i))
c.child1 = child
} else {
c.mask |= (uint32(1) << uint(i))
c.child2 = child
break
}
}
if n.ref.len > 0 {
copy(c.ref.data[:], n.ref.data[:])
}
c.ref.len = n.ref.len
return &c
}
func (n *duoNode) fullCopy() *fullNode {
c := fullNode{}
i1, i2 := n.childrenIdx()
c.Children[i1] = n.child1
c.Children[i2] = n.child2
if n.ref.len > 0 {
copy(c.ref.data[:], n.ref.data[:])
}
c.ref.len = n.ref.len
return &c
}
func (n *duoNode) copy() *duoNode {
c := *n
return &c
}
func (n *shortNode) copy() *shortNode {
c := *n
return &c
}
func resetRefs(nd node) {
switch n := nd.(type) {
case *shortNode:
n.ref.len = 0
resetRefs(n.Val)
case *duoNode:
n.ref.len = 0
resetRefs(n.child1)
resetRefs(n.child2)
case *fullNode:
n.ref.len = 0
for _, child := range n.Children {
if child != nil {
resetRefs(child)
}
}
}
}
// nodeRef might contain node's RLP or hash thereof.
// Used instead of []byte in order to reduce GC churn.
type nodeRef struct {
data common.Hash // cached RLP of the node or hash thereof
len byte // length of the data (0 indicates invalid data)
}
func (n hashNode) reference() []byte { return n.hash }
func (n valueNode) reference() []byte { return nil }
func (n codeNode) reference() []byte { return nil }
func (n *fullNode) reference() []byte { return n.ref.data[0:n.ref.len] }
func (n *duoNode) reference() []byte { return n.ref.data[0:n.ref.len] }
func (n *shortNode) reference() []byte { return n.ref.data[0:n.ref.len] }
func (an *accountNode) reference() []byte { return nil }
// WitnessLen calculation logic:
// hashNode: represents full underlying witness
// valueNode: opcode + len(storage)
// codeNode: opcode + len(code)
// fullNode: opcode + mask + childrenWitnessLen
// duoNode: opcode + mask + childrenWitnessLen
// shortNode: opcode + len(key)/2 + childrenWitnessLen
// accountNode: opcode + account data len + codeWitnessLen + storageWitnessLen
func (n hashNode) witnessLen() uint64 { return n.witnessLength }
func (n valueNode) witnessLen() uint64 { return uint64(len(n)) + 1 }
func (n codeNode) witnessLen() uint64 { return uint64(len(n)) + 1 }
func (n *fullNode) witnessLen() uint64 { return n.witnessLength }
func (n *duoNode) witnessLen() uint64 { return n.witnessLength }
func (n *shortNode) witnessLen() uint64 { return n.witnessLength }
func (an *accountNode) witnessLen() uint64 {
res := 1 + uint64(an.EncodingLengthForStorage())
if an.storage != nil {
res += an.storage.witnessLen()
}
if an.code != nil {
res += an.code.witnessLen()
}
return res
}
func (n *fullNode) recalculateWitnessLen() {
n.witnessLength = 1 + 1 // opcode + mask + childrenWitnessLen
for j := range n.Children {
if n.Children[j] != nil {
n.witnessLength += n.Children[j].witnessLen()
}
}
}
func (n *duoNode) recalculateWitnessLen() {
n.witnessLength = 1 + 1 // opcode + mask + childrenWitnessLen
if n.child1 != nil {
n.witnessLength += n.child1.witnessLen()
}
if n.child2 != nil {
n.witnessLength += n.child2.witnessLen()
}
}
func (n *shortNode) recalculateWitnessLen() {
n.witnessLength = 1 + 1 + uint64(len(n.Key))/2 + n.Val.witnessLen() // opcode + len(key)/2 + childrenWitnessLen
}
// Pretty printing.
func (n fullNode) String() string { return n.fstring("") }
func (n duoNode) String() string { return n.fstring("") }
func (n shortNode) String() string { return n.fstring("") }
func (n hashNode) String() string { return n.fstring("") }
func (n valueNode) String() string { return n.fstring("") }
func (n codeNode) String() string { return n.fstring("") }
func (an accountNode) String() string { return an.fstring("") }
func CodeKeyFromAddrHash(addrHash []byte) []byte {
return append(addrHash, 0xC0, 0xDE)
}
func CodeHexFromHex(hex []byte) []byte {
return append(hex, 0x0C, 0x00, 0x0D, 0x0E)
}
func IsPointingToCode(key []byte) bool {
// checking for 0xC0DE
l := len(key)
if l < 2 {
return false
}
return key[l-2] == 0xC0 && key[l-1] == 0xDE
}
func AddrHashFromCodeKey(codeKey []byte) []byte {
// cut off 0xC0DE
return codeKey[:len(codeKey)-2]
}
func calcSubtreeSize(node node) int {
switch n := node.(type) {
case nil:
return 0
case valueNode:
return 0
case *shortNode:
return calcSubtreeSize(n.Val)
case *duoNode:
return 1 + calcSubtreeSize(n.child1) + calcSubtreeSize(n.child2)
case *fullNode:
size := 1
for _, child := range n.Children {
size += calcSubtreeSize(child)
}
return size
case *accountNode:
return len(n.code) + calcSubtreeSize(n.storage)
case hashNode:
return 0
}
return 0
}
func calcSubtreeNodes(node node) int {
switch n := node.(type) {
case nil:
return 0
case valueNode:
return 0
case *shortNode:
return calcSubtreeNodes(n.Val)
case *duoNode:
return 1 + calcSubtreeNodes(n.child1) + calcSubtreeNodes(n.child2)
case *fullNode:
size := 1
for _, child := range n.Children {
size += calcSubtreeNodes(child)
}
return size
case *accountNode:
if n.code != nil {
return 1 + calcSubtreeNodes(n.storage)
}
return calcSubtreeNodes(n.storage)
case hashNode:
return 0
}
return 0
}