erigon-pulse/trie/trie.go

1290 lines
33 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package trie implements Merkle Patricia Tries.
package trie
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/ledgerwatch/turbo-geth/common"
"github.com/ledgerwatch/turbo-geth/core/types/accounts"
"github.com/ledgerwatch/turbo-geth/crypto"
)
var (
// EmptyRoot is the known root hash of an empty trie.
// DESCRIBED: docs/programmers_guide/guide.md#root
EmptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyState is the known hash of an empty state trie entry.
emptyState = crypto.Keccak256Hash(nil)
)
// Trie is a Merkle Patricia Trie.
// The zero value is an empty trie with no database.
// Use New to create a trie that sits on top of a database.
//
// Trie is not safe for concurrent use.
type Trie struct {
root node
touchFunc func(hex []byte, del bool)
newHasherFunc func() *hasher
Version uint8
binary bool
}
// New creates a trie with an existing root node from db.
//
// If root is the zero hash or the sha3 hash of an empty string, the
// trie is initially empty and does not require a database. Otherwise,
// New will panic if db is nil and returns a MissingNodeError if root does
// not exist in the database. Accessing the trie loads nodes from db on demand.
func New(root common.Hash) *Trie {
trie := &Trie{
touchFunc: func([]byte, bool) {},
newHasherFunc: func() *hasher { return newHasher( /*valueNodesRlpEncoded = */ false) },
}
if (root != common.Hash{}) && root != EmptyRoot {
trie.root = hashNode(root[:])
}
return trie
}
func NewBinary(root common.Hash) *Trie {
trie := New(root)
trie.binary = true
return trie
}
// NewTestRLPTrie treats all the data provided to `Update` function as rlp-encoded.
// it is usually used for testing purposes.
func NewTestRLPTrie(root common.Hash) *Trie {
trie := &Trie{
touchFunc: func([]byte, bool) {},
newHasherFunc: func() *hasher { return newHasher( /*valueNodesRlpEncoded = */ true) },
}
if (root != common.Hash{}) && root != EmptyRoot {
trie.root = hashNode(root[:])
}
return trie
}
func (t *Trie) SetTouchFunc(touchFunc func(hex []byte, del bool)) {
t.touchFunc = touchFunc
}
// Get returns the value for key stored in the trie.
func (t *Trie) Get(key []byte) (value []byte, gotValue bool) {
if t.root == nil {
return nil, true
}
hex := keybytesToHex(key)
if t.binary {
hex = keyHexToBin(hex)
}
return t.get(t.root, hex, 0)
}
func (t *Trie) GetAccount(key []byte) (value *accounts.Account, gotValue bool) {
if t.root == nil {
return nil, true
}
hex := keybytesToHex(key)
if t.binary {
hex = keyHexToBin(hex)
}
accNode, gotValue := t.getAccount(t.root, hex, 0)
if accNode != nil {
var value accounts.Account
value.Copy(&accNode.Account)
return &value, gotValue
}
return nil, gotValue
}
func (t *Trie) getAccount(origNode node, key []byte, pos int) (value *accountNode, gotValue bool) {
switch n := (origNode).(type) {
case nil:
return nil, true
case *shortNode:
matchlen := prefixLen(key[pos:], n.Key)
if matchlen == len(n.Key) {
if v, ok := n.Val.(*accountNode); ok {
return v, true
} else {
return t.getAccount(n.Val, key, pos+matchlen)
}
} else {
return nil, true
}
case *duoNode:
t.touchFunc(key[:pos], false)
i1, i2 := n.childrenIdx()
switch key[pos] {
case i1:
return t.getAccount(n.child1, key, pos+1)
case i2:
return t.getAccount(n.child2, key, pos+1)
default:
return nil, true
}
case *fullNode:
t.touchFunc(key[:pos], false)
child := n.Children[key[pos]]
return t.getAccount(child, key, pos+1)
case hashNode:
return nil, false
case *accountNode:
return n, true
default:
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
}
}
func (t *Trie) get(origNode node, key []byte, pos int) (value []byte, gotValue bool) {
switch n := (origNode).(type) {
case nil:
return nil, true
case valueNode:
return n, true
case *accountNode:
return t.get(n.storage, key, pos)
case *shortNode:
matchlen := prefixLen(key[pos:], n.Key)
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
value, gotValue = t.get(n.Val, key, pos+matchlen)
} else {
value, gotValue = nil, true
}
return
case *duoNode:
t.touchFunc(key[:pos], false)
i1, i2 := n.childrenIdx()
switch key[pos] {
case i1:
value, gotValue = t.get(n.child1, key, pos+1)
case i2:
value, gotValue = t.get(n.child2, key, pos+1)
default:
value, gotValue = nil, true
}
return
case *fullNode:
t.touchFunc(key[:pos], false)
child := n.Children[key[pos]]
if child == nil {
return nil, true
}
return t.get(child, key, pos+1)
case hashNode:
return n, false
default:
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
}
}
// Update associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
// DESCRIBED: docs/programmers_guide/guide.md#root
func (t *Trie) Update(key, value []byte, blockNr uint64) {
hex := keybytesToHex(key)
if t.binary {
hex = keyHexToBin(hex)
}
if t.root == nil {
newnode := &shortNode{Key: hex, Val: valueNode(value)}
t.root = newnode
} else {
_, t.root = t.insert(t.root, hex, 0, valueNode(value))
}
}
func (t *Trie) UpdateAccount(key []byte, acc *accounts.Account) {
//make account copy. There are some pointer into big.Int
value := new(accounts.Account)
value.Copy(acc)
hex := keybytesToHex(key)
if t.binary {
hex = keyHexToBin(hex)
}
if t.root == nil {
var newnode node
if value.Root == EmptyRoot || value.Root == (common.Hash{}) {
newnode = &shortNode{Key: hex, Val: &accountNode{*value, nil, true}}
} else {
newnode = &shortNode{Key: hex, Val: &accountNode{*value, hashNode(value.Root[:]), true}}
}
t.root = newnode
} else {
if value.Root == EmptyRoot || value.Root == (common.Hash{}) {
_, t.root = t.insert(t.root, hex, 0, &accountNode{*value, nil, true})
} else {
_, t.root = t.insert(t.root, hex, 0, &accountNode{*value, hashNode(value.Root[:]), true})
}
}
}
// ResolveRequest expresses the need to fetch a subtrie from the database. The location of this
// subtrie is specified by the resolveHex[:resolvePos]. The remaining part of resolveHex (if present)
// is useful to ensure that specific leaves of the trie are fully expanded (and not rolled into
// the hashes). One might think of two uses of ResolveRequests (and perhaps we need to consider
// splitting them into two types). First type is to fetch certain number of levels of a given
// subtrie, but specifying resolveHex and resolvePos such that resolvePos == len(resolveHex).
// In such situations, it want to also set topLevels field in the Resolver to a non-zero
// value, otherwise only a hashNode will be resolved.
// Second type is to fetch a subtrie in such a way that a set of keys will be fully expanded,
// so that one can perform reads, inserts, and deletes on those keys without needing to do
// any more resolving.
type ResolveRequest struct {
t *Trie // trie to act upon
contract []byte // contract address hash + incarnation (32+8 bytes) or nil, if the trie is the main trie
resolveHex []byte // Key for which the resolution is requested
resolvePos int // Position in the key for which resolution is requested
extResolvePos int // Internal field, does not need to be set when ResolveRequest is created
resolveHash hashNode // Expected hash of the resolved node (for correctness checking)
RequiresRLP bool // whether to output node's RLP
NodeRLP []byte // [OUT] RLP of the resolved node
}
// NewResolveRequest creates a new ResolveRequest.
// contract must be either address hash + incarnation (32+8 bytes) or nil
func (t *Trie) NewResolveRequest(contract []byte, hex []byte, pos int, resolveHash []byte) *ResolveRequest {
return &ResolveRequest{t: t, contract: contract, resolveHex: hex, resolvePos: pos, resolveHash: hashNode(resolveHash)}
}
func (rr *ResolveRequest) String() string {
return fmt.Sprintf("rr{t:%x,resolveHex:%x,resolvePos:%d,resolveHash:%s}", rr.contract, rr.resolveHex, rr.resolvePos, rr.resolveHash)
}
// NeedResolution determines whether the trie needs to be extended (resolved) by fetching data
// from the database, if one were to access the key specified
// In the case of "Yes", also returns a corresponding ResolveRequest
// contract, if not empty, must be equal to the address hash
// storageKey must be the concatenation of contract's address hash and the hash of the item's key, in the KEYBYTES encoding
func (t *Trie) NeedResolution(contract []byte, storageKey []byte) (bool, *ResolveRequest) {
var nd = t.root
hex := keybytesToHex(storageKey)
if t.binary {
hex = keyHexToBin(hex)
}
pos := 0
var incarnation uint64
for {
switch n := nd.(type) {
case nil:
return false, nil
case *shortNode:
matchlen := prefixLen(hex[pos:], n.Key)
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
nd = n.Val
} else {
return false, nil
}
pos += matchlen
case *duoNode:
i1, i2 := n.childrenIdx()
switch hex[pos] {
case i1:
nd = n.child1
pos++
case i2:
nd = n.child2
pos++
default:
return false, nil
}
case *fullNode:
child := n.Children[hex[pos]]
if child == nil {
return false, nil
}
nd = child
pos++
case valueNode:
return false, nil
case *accountNode:
if pos == len(hex) {
return false, nil
}
nd = n.storage
incarnation = n.Incarnation
case hashNode:
if contract == nil {
return true, t.NewResolveRequest(nil, hex, pos, common.CopyBytes(n))
}
// 8 is IncarnationLength
prefix := make([]byte, len(contract)+8)
copy(prefix, contract)
binary.BigEndian.PutUint64(prefix[len(contract):], incarnation^0xffffffffffffffff)
hexContractLen := 2 * len(contract) // Length of 'contract' prefix in HEX encoding
return true, t.NewResolveRequest(prefix, hex[hexContractLen:], pos-hexContractLen, common.CopyBytes(n))
default:
panic(fmt.Sprintf("Unknown node: %T", n))
}
}
}
func (t *Trie) insert(origNode node, key []byte, pos int, value node) (updated bool, newNode node) {
//fmt.Printf("insert %T key %x %d\n", origNode, key, pos)
var nn node
if len(key) == pos {
origN, origNok := origNode.(valueNode)
vn, vnok := value.(valueNode)
if origNok && vnok {
updated = !bytes.Equal(origN, vn)
if updated {
newNode = value
} else {
newNode = vn
}
return updated, newNode
}
origAccN, origNok := origNode.(*accountNode)
vAccN, vnok := value.(*accountNode)
if origNok && vnok {
updated = !origAccN.Equals(&vAccN.Account)
if updated {
origAccN.Account.Copy(&vAccN.Account)
}
return updated, origAccN
}
// replacing nodes except accounts
if !origNok {
return true, value
}
}
switch n := origNode.(type) {
case nil:
s := &shortNode{Key: common.CopyBytes(key[pos:]), Val: value}
return true, s
case *accountNode:
updated, nn = t.insert(n.storage, key, pos, value)
if updated {
n.storage = nn
n.hashCorrect = false
}
return updated, n
case *shortNode:
matchlen := prefixLen(key[pos:], n.Key)
// If the whole key matches, keep this short node as is
// and only update the value.
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
updated, nn = t.insert(n.Val, key, pos+matchlen, value)
if updated {
n.Val = nn
}
newNode = n
} else {
// Otherwise branch out at the index where they differ.
var c1 node
if len(n.Key) == matchlen+1 {
c1 = n.Val
} else {
s1 := &shortNode{Key: common.CopyBytes(n.Key[matchlen+1:]), Val: n.Val}
c1 = s1
}
var c2 node
if len(key) == pos+matchlen+1 {
c2 = value
} else {
s2 := &shortNode{Key: common.CopyBytes(key[pos+matchlen+1:]), Val: value}
c2 = s2
}
branch := &duoNode{}
if n.Key[matchlen] < key[pos+matchlen] {
branch.child1 = c1
branch.child2 = c2
} else {
branch.child1 = c2
branch.child2 = c1
}
branch.mask = (1 << (n.Key[matchlen])) | (1 << (key[pos+matchlen]))
branch.flags.dirty = true
// Replace this shortNode with the branch if it occurs at index 0.
if matchlen == 0 {
t.touchFunc(key[:pos], false)
newNode = branch // current node leaves the generation, but new node branch joins it
} else {
// Otherwise, replace it with a short node leading up to the branch.
t.touchFunc(key[:pos+matchlen], false)
n.Key = common.CopyBytes(key[pos : pos+matchlen])
n.Val = branch
newNode = n
}
updated = true
}
return
case *duoNode:
t.touchFunc(key[:pos], false)
i1, i2 := n.childrenIdx()
switch key[pos] {
case i1:
updated, nn = t.insert(n.child1, key, pos+1, value)
if updated {
n.child1 = nn
n.flags.dirty = true
}
newNode = n
case i2:
updated, nn = t.insert(n.child2, key, pos+1, value)
if updated {
n.child2 = nn
n.flags.dirty = true
}
newNode = n
default:
var child node
if len(key) == pos+1 {
child = value
} else {
short := &shortNode{Key: common.CopyBytes(key[pos+1:]), Val: value}
child = short
}
newnode := &fullNode{}
newnode.Children[i1] = n.child1
newnode.Children[i2] = n.child2
newnode.flags.dirty = true
newnode.Children[key[pos]] = child
updated = true
// current node leaves the generation but newnode joins it
newNode = newnode
}
return
case *fullNode:
t.touchFunc(key[:pos], false)
child := n.Children[key[pos]]
if child == nil {
if len(key) == pos+1 {
n.Children[key[pos]] = value
} else {
short := &shortNode{Key: common.CopyBytes(key[pos+1:]), Val: value}
n.Children[key[pos]] = short
}
updated = true
n.flags.dirty = true
} else {
updated, nn = t.insert(child, key, pos+1, value)
if updated {
n.Children[key[pos]] = nn
n.flags.dirty = true
}
}
newNode = n
return
default:
fmt.Printf("Key: %x, Pos: %d\n", key, pos)
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
}
}
//
//func convertToDuoNode(orig *shortNode, pos uint64) node {
// // Otherwise branch out at the index where they differ.
// var c1 node
// if len(nKey) == matchlen+1 {
// c1 = n.Val
// } else {
// s1 := &shortNode{Key: hexToCompact(nKey[matchlen+1:]), Val: n.Val}
// c1 = s1
// }
// var c2 node
// if len(key) == pos+matchlen+1 {
// c2 = value
// } else {
// s2 := &shortNode{Key: hexToCompact(key[pos+matchlen+1:]), Val: value}
// c2 = s2
// }
// branch := &duoNode{}
// if nKey[matchlen] < key[pos+matchlen] {
// branch.child1 = c1
// branch.child2 = c2
// } else {
// branch.child1 = c2
// branch.child2 = c1
// }
// branch.mask = (1 << (nKey[matchlen])) | (1 << (key[pos+matchlen]))
// branch.flags.dirty = true
//
// // Replace this shortNode with the branch if it occurs at index 0.
// if matchlen == 0 {
// t.touchFunc(key[:pos], false)
// newNode = branch // current node leaves the generation, but new node branch joins it
// } else {
// // Otherwise, replace it with a short node leading up to the branch.
// t.touchFunc(key[:pos+matchlen], false)
// n.Key = hexToCompact(key[pos : pos+matchlen])
// n.Val = branch
// newNode = n
// }
// updated = true
//}
func (t *Trie) hook(hex []byte, n node) {
var nd = t.root
var parent node
pos := 0
var account bool
for pos < len(hex) || account {
switch n := nd.(type) {
case nil:
return
case *shortNode:
matchlen := prefixLen(hex[pos:], n.Key)
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
parent = n
nd = n.Val
pos += matchlen
if _, ok := nd.(*accountNode); ok {
account = true
}
} else {
return
}
case *duoNode:
t.touchFunc(hex[:pos], false)
i1, i2 := n.childrenIdx()
switch hex[pos] {
case i1:
parent = n
nd = n.child1
pos++
case i2:
parent = n
nd = n.child2
pos++
default:
return
}
case *fullNode:
t.touchFunc(hex[:pos], false)
child := n.Children[hex[pos]]
if child == nil {
return
} else {
parent = n
nd = child
pos++
}
case *accountNode:
parent = n
nd = n.storage
account = false
case valueNode:
return
case hashNode:
return
default:
panic(fmt.Sprintf("Unknown node: %T", n))
}
}
if _, ok := nd.(hashNode); !ok && nd != nil {
return
}
t.touchAll(n, hex, false)
switch p := parent.(type) {
case nil:
t.root = n
case *shortNode:
p.Val = n
case *duoNode:
i1, i2 := p.childrenIdx()
switch hex[len(hex)-1] {
case i1:
p.child1 = n
case i2:
p.child2 = n
}
case *fullNode:
idx := hex[len(hex)-1]
p.Children[idx] = n
case *accountNode:
p.storage = n
}
}
func (t *Trie) touchAll(n node, hex []byte, del bool) {
switch n := n.(type) {
case *shortNode:
if _, ok := n.Val.(valueNode); !ok {
// Don't need to compute prefix for a leaf
h := n.Key
// Remove terminator
if h[len(h)-1] == 16 {
h = h[:len(h)-1]
}
hexVal := concat(hex, h...)
t.touchAll(n.Val, hexVal, del)
}
case *duoNode:
t.touchFunc(hex, del)
i1, i2 := n.childrenIdx()
hex1 := make([]byte, len(hex)+1)
copy(hex1, hex)
hex1[len(hex)] = i1
hex2 := make([]byte, len(hex)+1)
copy(hex2, hex)
hex2[len(hex)] = i2
t.touchAll(n.child1, hex1, del)
t.touchAll(n.child2, hex2, del)
case *fullNode:
t.touchFunc(hex, del)
for i, child := range n.Children {
if child != nil {
t.touchAll(child, concat(hex, byte(i)), del)
}
}
case *accountNode:
if n.storage != nil {
t.touchAll(n.storage, hex, del)
}
}
}
// Delete removes any existing value for key from the trie.
// DESCRIBED: docs/programmers_guide/guide.md#root
func (t *Trie) Delete(key []byte, blockNr uint64) {
hex := keybytesToHex(key)
if t.binary {
hex = keyHexToBin(hex)
}
_, t.root = t.delete(t.root, hex, 0)
}
func (t *Trie) convertToShortNode(child node, pos uint) node {
cnode := child
if pos != 16 {
// If the remaining entry is a short node, it replaces
// n and its key gets the missing nibble tacked to the
// front. This avoids creating an invalid
// shortNode{..., shortNode{...}}. Since the entry
// might not be loaded yet, resolve it just for this
// check.
if short, ok := child.(*shortNode); ok {
k := make([]byte, len(short.Key)+1)
k[0] = byte(pos)
copy(k[1:], short.Key)
return &shortNode{Key: k, Val: short.Val}
}
}
// Otherwise, n is replaced by a one-nibble short node
// containing the child.
//fmt.Println("trie/trie.go:709", hexToCompact([]byte{byte(pos)}))
return &shortNode{Key: []byte{byte(pos)}, Val: cnode}
}
// delete returns the new root of the trie with key deleted.
// It reduces the trie to minimal form by simplifying
// nodes on the way up after deleting recursively.
func (t *Trie) delete(origNode node, key []byte, keyStart int) (updated bool, newNode node) {
var nn node
switch n := origNode.(type) {
case *shortNode:
matchlen := prefixLen(key[keyStart:], n.Key)
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
if matchlen == len(key)-keyStart {
updated = true
touchKey := key[:keyStart+matchlen]
if touchKey[len(touchKey)-1] == 16 {
touchKey = touchKey[:len(touchKey)-1]
}
t.touchAll(n.Val, touchKey, true)
newNode = nil // remove n entirely for whole matches
} else {
// The key is longer than n.Key. Remove the remaining suffix
// from the subtrie. Child can never be nil here since the
// subtrie must contain at least two other values with keys
// longer than n.Key.
updated, nn = t.delete(n.Val, key, keyStart+matchlen)
if !updated {
newNode = n
} else {
if nn == nil {
newNode = nil
} else {
if shortChild, ok := nn.(*shortNode); ok {
// Deleting from the subtrie reduced it to another
// short node. Merge the nodes to avoid creating a
// shortNode{..., shortNode{...}}. Use concat (which
// always creates a new slice) instead of append to
// avoid modifying n.Key since it might be shared with
// other nodes.
newNode = &shortNode{Key: concat(n.Key, shortChild.Key...), Val: shortChild.Val}
} else {
n.Val = nn
newNode = n
}
}
}
}
} else {
updated = false
newNode = n // don't replace n on mismatch
}
return
case *duoNode:
i1, i2 := n.childrenIdx()
switch key[keyStart] {
case i1:
updated, nn = t.delete(n.child1, key, keyStart+1)
if !updated {
t.touchFunc(key[:keyStart], false)
newNode = n
} else {
if nn == nil {
t.touchFunc(key[:keyStart], true)
newNode = t.convertToShortNode(n.child2, uint(i2))
} else {
t.touchFunc(key[:keyStart], false)
n.child1 = nn
n.flags.dirty = true
newNode = n
}
}
case i2:
updated, nn = t.delete(n.child2, key, keyStart+1)
if !updated {
t.touchFunc(key[:keyStart], false)
newNode = n
} else {
if nn == nil {
t.touchFunc(key[:keyStart], true)
newNode = t.convertToShortNode(n.child1, uint(i1))
} else {
t.touchFunc(key[:keyStart], false)
n.child2 = nn
n.flags.dirty = true
newNode = n
}
}
default:
t.touchFunc(key[:keyStart], false)
updated = false
newNode = n
}
return
case *fullNode:
child := n.Children[key[keyStart]]
updated, nn = t.delete(child, key, keyStart+1)
if !updated {
t.touchFunc(key[:keyStart], false)
newNode = n
} else {
n.Children[key[keyStart]] = nn
// Check how many non-nil entries are left after deleting and
// reduce the full node to a short node if only one entry is
// left. Since n must've contained at least two children
// before deletion (otherwise it would not be a full node) n
// can never be reduced to nil.
//
// When the loop is done, pos contains the index of the single
// value that is left in n or -2 if n contains at least two
// values.
var pos1, pos2 int
count := 0
for i, cld := range n.Children {
if cld != nil {
if count == 0 {
pos1 = i
}
if count == 1 {
pos2 = i
}
count++
if count > 2 {
break
}
}
}
if count == 1 {
t.touchFunc(key[:keyStart], true)
newNode = t.convertToShortNode(n.Children[pos1], uint(pos1))
} else if count == 2 {
t.touchFunc(key[:keyStart], false)
duo := &duoNode{}
if pos1 == int(key[keyStart]) {
duo.child1 = nn
} else {
duo.child1 = n.Children[pos1]
}
if pos2 == int(key[keyStart]) {
duo.child2 = nn
} else {
duo.child2 = n.Children[pos2]
}
duo.flags.dirty = true
duo.mask = (1 << uint(pos1)) | (uint32(1) << uint(pos2))
newNode = duo
} else if count > 2 {
t.touchFunc(key[:keyStart], false)
// n still contains at least three values and cannot be reduced.
n.flags.dirty = true
newNode = n
}
}
return
case valueNode:
updated = true
newNode = nil
return
case *accountNode:
if key[keyStart] == 16 {
// Key terminates here
if n.storage != nil {
// Mark all the storage nodes as deleted
t.touchAll(n.storage, key[:keyStart], true)
}
return true, nil
}
updated, nn = t.delete(n.storage, key, keyStart)
if updated {
n.storage = nn
n.hashCorrect = false
}
updated = true
newNode = n
return
case nil:
updated = false
newNode = nil
return
default:
panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key[:keyStart]))
}
}
func (t *Trie) deleteSubtree(origNode node, key []byte, keyStart int, blockNr uint64) (updated bool, newNode node) {
if keyStart+1 == len(key) {
return true, nil
}
var nn node
switch n := origNode.(type) {
case *shortNode:
matchlen := prefixLen(key[keyStart:], n.Key)
switch {
case len(key) == keyStart:
updated = true
newNode = nil
case matchlen == len(key[keyStart:])-1:
return true, nil
case matchlen < len(n.Key) && matchlen != len(key[keyStart:]):
updated = false
newNode = n
default:
if keyStart+1 == len(key) {
return true, nil
}
updated, nn = t.deleteSubtree(n.Val, key, keyStart+len(n.Key), blockNr)
if !updated {
newNode = n
} else {
if nn == nil {
newNode = nil
} else {
if shortChild, ok := nn.(*shortNode); ok {
// Deleting from the subtrie reduced it to another
// short node. Merge the nodes to avoid creating a
// shortNode{..., shortNode{...}}. Use concat (which
// always creates a new slice) instead of append to
// avoid modifying n.Key since it might be shared with
// other nodes.
newNode = &shortNode{Key: concat(n.Key, shortChild.Key...), Val: shortChild.Val}
} else {
n.Val = nn
newNode = n
}
}
}
}
return updated, newNode
case *duoNode:
i1, i2 := n.childrenIdx()
switch key[keyStart] {
case i1:
updated, nn = t.deleteSubtree(n.child1, key, keyStart+1, blockNr)
if !updated {
newNode = n
} else {
if nn == nil {
newNode = t.convertToShortNode(n.child2, uint(i2))
} else {
n.child1 = nn
n.flags.dirty = true
newNode = n
}
}
case i2:
updated, nn = t.deleteSubtree(n.child2, key, keyStart+1, blockNr)
if !updated {
newNode = n
} else {
if nn == nil {
newNode = t.convertToShortNode(n.child1, uint(i1))
} else {
n.child2 = nn
n.flags.dirty = true
newNode = n
}
}
default:
updated = false
newNode = n
}
return updated, newNode
case *fullNode:
child := n.Children[key[keyStart]]
updated, nn = t.deleteSubtree(child, key, keyStart+1, blockNr)
if !updated {
t.touchFunc(key[:keyStart], false)
newNode = n
} else {
n.Children[key[keyStart]] = nn
// Check how many non-nil entries are left after deleting and
// reduce the full node to a short node if only one entry is
// left. Since n must've contained at least two children
// before deletion (otherwise it would not be a full node) n
// can never be reduced to nil.
//
// When the loop is done, pos contains the index of the single
// value that is left in n or -2 if n contains at least two
// values.
var pos1, pos2 int
count := 0
for i, cld := range n.Children {
if cld != nil {
if count == 0 {
pos1 = i
}
if count == 1 {
pos2 = i
}
count++
if count > 2 {
break
}
}
}
if count == 1 {
t.touchFunc(key[:keyStart], true)
newNode = t.convertToShortNode(n.Children[pos1], uint(pos1))
} else if count == 2 {
t.touchFunc(key[:keyStart], false)
duo := &duoNode{}
if pos1 == int(key[keyStart]) {
duo.child1 = nn
} else {
duo.child1 = n.Children[pos1]
}
if pos2 == int(key[keyStart]) {
duo.child2 = nn
} else {
duo.child2 = n.Children[pos2]
}
duo.flags.dirty = true
duo.mask = (1 << uint(pos1)) | (uint32(1) << uint(pos2))
newNode = duo
} else if count > 2 {
t.touchFunc(key[:keyStart], false)
// n still contains at least three values and cannot be reduced.
n.flags.dirty = true
newNode = n
}
}
return
case valueNode:
updated = true
newNode = nil
return
case *accountNode:
if keyStart >= len(key) || key[keyStart] == 16 {
// Key terminates here
if n.storage != nil {
h := key[:keyStart]
if h[len(h)-1] == 16 {
h = h[:len(h)-1]
}
// Mark all the storage nodes as deleted
t.touchAll(n.storage, h, true)
}
n.storage = nil
n.hashCorrect = false
return true, n
}
updated, nn = t.deleteSubtree(n.storage, key, keyStart, 0)
if updated {
n.storage = nn
n.hashCorrect = false
}
updated = true
newNode = n
return
case nil:
updated = false
newNode = nil
return
default:
panic(fmt.Sprintf("[block %d] %T: invalid node: %v (%v)", blockNr, n, n, key[:keyStart]))
}
}
func (t *Trie) DeleteSubtree(keyPrefix []byte, blockNr uint64) {
hexPrefix := keybytesToHex(keyPrefix)
if t.binary {
hexPrefix = keyHexToBin(hexPrefix)
}
_, t.root = t.deleteSubtree(t.root, hexPrefix, 0, blockNr)
}
func concat(s1 []byte, s2 ...byte) []byte {
r := make([]byte, len(s1)+len(s2))
copy(r, s1)
copy(r[len(s1):], s2)
return r
}
// Root returns the root hash of the trie.
// Deprecated: use Hash instead.
func (t *Trie) Root() []byte { return t.Hash().Bytes() }
// Hash returns the root hash of the trie. It does not write to the
// database and can be used even if the trie doesn't have one.
// DESCRIBED: docs/programmers_guide/guide.md#root
func (t *Trie) Hash() common.Hash {
hash, _ := t.hashRoot()
return common.BytesToHash(hash.(hashNode))
}
// DeepHash returns internal hash of a node reachable by the specified key prefix
// Note that if the prefix points into the middle of a key for a leaf node or of an extention
// node, it will return the hash of a modified leaf node or extension node, where the
// key prefix is removed from the key.
// First returned value is `true` if the node with the specified prefix is found
func (t *Trie) DeepHash(keyPrefix []byte) (bool, common.Hash) {
hexPrefix := keybytesToHex(keyPrefix)
if t.binary {
hexPrefix = keyHexToBin(hexPrefix)
}
accNode, gotValue := t.getAccount(t.root, hexPrefix, 0)
if !gotValue {
return false, common.Hash{}
}
//if accNode==nil {
// return gotValue, common.Hash{}
//}
if accNode.hashCorrect {
return true, accNode.Root
}
if accNode.storage == nil {
accNode.Root = EmptyRoot
accNode.hashCorrect = true
} else {
h := t.newHasherFunc()
defer returnHasherToPool(h)
h.hash(accNode.storage, true, accNode.Root[:])
}
return true, accNode.Root
}
func (t *Trie) unload(hex []byte, h *hasher) {
nd := t.root
var parent node
pos := 0
var account bool
for pos < len(hex) || account {
switch n := nd.(type) {
case nil:
return
case *shortNode:
matchlen := prefixLen(hex[pos:], n.Key)
if matchlen == len(n.Key) || n.Key[matchlen] == 16 {
parent = n
nd = n.Val
pos += matchlen
if _, ok := n.Val.(*accountNode); ok {
account = true
}
} else {
return
}
case *duoNode:
i1, i2 := n.childrenIdx()
switch hex[pos] {
case i1:
parent = n
nd = n.child1
pos++
case i2:
parent = n
nd = n.child2
pos++
default:
return
}
case *fullNode:
child := n.Children[hex[pos]]
if child == nil {
return
}
parent = n
nd = child
pos++
case valueNode:
return
case *accountNode:
parent = n
nd = n.storage
account = false
case hashNode:
return
default:
panic(fmt.Sprintf("Unknown node: %T", n))
}
}
if _, ok := nd.(hashNode); ok {
return
}
var hn common.Hash
if nd == nil {
fmt.Printf("nd == nil, hex %x, parent node: %T\n", hex, parent)
}
h.hash(nd, len(hex) == 0, hn[:])
hnode := hashNode(hn[:])
switch p := parent.(type) {
case nil:
t.root = hnode
case *shortNode:
p.Val = hnode
case *duoNode:
i1, i2 := p.childrenIdx()
switch hex[len(hex)-1] {
case i1:
p.child1 = hnode
case i2:
p.child2 = hnode
}
case *fullNode:
idx := hex[len(hex)-1]
p.Children[idx] = hnode
case *accountNode:
p.storage = hnode
}
}
func (t *Trie) CountPrunableNodes() int {
return t.countPrunableNodes(t.root, []byte{}, false)
}
func (t *Trie) countPrunableNodes(nd node, hex []byte, print bool) int {
switch n := nd.(type) {
case nil:
return 0
case valueNode:
return 0
case *accountNode:
return t.countPrunableNodes(n.storage, hex, print)
case hashNode:
return 0
case *shortNode:
var hexVal []byte
if _, ok := n.Val.(valueNode); !ok { // Don't need to compute prefix for a leaf
h := n.Key
if h[len(h)-1] == 16 {
h = h[:len(h)-1]
}
hexVal = concat(hex, h...)
}
//@todo accountNode?
return t.countPrunableNodes(n.Val, hexVal, print)
case *duoNode:
i1, i2 := n.childrenIdx()
hex1 := make([]byte, len(hex)+1)
copy(hex1, hex)
hex1[len(hex)] = byte(i1)
hex2 := make([]byte, len(hex)+1)
copy(hex2, hex)
hex2[len(hex)] = byte(i2)
if print {
fmt.Printf("%T node: %x\n", n, hex)
}
return 1 + t.countPrunableNodes(n.child1, hex1, print) + t.countPrunableNodes(n.child2, hex2, print)
case *fullNode:
if print {
fmt.Printf("%T node: %x\n", n, hex)
}
count := 0
for i, child := range n.Children {
if child != nil {
count += t.countPrunableNodes(child, concat(hex, byte(i)), print)
}
}
return 1 + count
default:
panic("")
}
}
func (t *Trie) hashRoot() (node, error) {
if t.root == nil {
return hashNode(EmptyRoot.Bytes()), nil
}
h := t.newHasherFunc()
defer returnHasherToPool(h)
var hn common.Hash
h.hash(t.root, true, hn[:])
return hashNode(hn[:]), nil
}