erigon-pulse/turbo/trie/gen_struct_step.go
Jason Yellick 4e9b378a5d
Enable negative Merkle proofs for eth_getProof (#7393)
This addresses the last known deficiency of the eth_getProof
implementation. The previous code would return an error in the event
that the element was not found in the trie. EIP-1186 allows for
'negative' proofs where a proof demonstrates that an element cannot be
in the trie, so this commit updates the logic to support that case.

Co-authored-by: Jason Yellick <jason@enya.ai>
2023-04-27 10:38:45 +07:00

483 lines
16 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"fmt"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon/turbo/rlphacks"
)
// Experimental code for separating data and structural information
// Each function corresponds to an opcode
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
type structInfoReceiver interface {
leaf(length int, keyHex []byte, val rlphacks.RlpSerializable) error
leafHash(length int, keyHex []byte, val rlphacks.RlpSerializable) error
accountLeaf(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32, codeSize int) error
accountLeafHash(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldset uint32) error
extension(key []byte) error
extensionHash(key []byte) error
branch(set uint16) error
branchHash(set uint16) error
hash(hash []byte) error
topHash() []byte
topHashes(prefix []byte, branches, children uint16) []byte
printTopHashes(prefix []byte, branches, children uint16)
setProofElement(pe *proofElement)
}
// hashCollector gets called whenever there might be a need to create intermediate hash record
type HashCollector func(keyHex []byte, hash []byte) error
type StorageHashCollector func(accWithInc []byte, keyHex []byte, hash []byte) error
type HashCollector2 func(keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error
type StorageHashCollector2 func(accWithInc []byte, keyHex []byte, hasState, hasTree, hasHash uint16, hashes, rootHash []byte) error
func calcPrecLen(groups []uint16) int {
if len(groups) == 0 {
return 0
}
return len(groups) - 1
}
type GenStructStepData interface {
GenStructStepData()
}
type GenStructStepAccountData struct {
FieldSet uint32
Balance uint256.Int
Nonce uint64
Incarnation uint64
}
func (GenStructStepAccountData) GenStructStepData() {}
type GenStructStepLeafData struct {
Value rlphacks.RlpSerializable
}
func (GenStructStepLeafData) GenStructStepData() {}
type GenStructStepHashData struct {
Hash libcommon.Hash
HasTree bool
}
func (GenStructStepHashData) GenStructStepData() {}
// GenStructStep is one step of the algorithm that generates the structural information based on the sequence of keys.
// `retain` parameter is the function that, called for a certain prefix, determines whether the trie node for that prefix needs to be
// compressed into just hash (if `false` is returned), or constructed (if `true` is returned). Usually the `retain` function is
// implemented in such a way to guarantee that certain keys are always accessible in the resulting trie (see RetainList.Retain function).
// `buildExtensions` is set to true if the algorithm's step is invoked recursively, i.e. not after a freshly provided leaf or hash
// `curr`, `succ` are two full keys or prefixes that are currently visible to the algorithm. By comparing these, the algorithm
// makes decisions about the local structure, i.e. the presence of the prefix groups.
// `e` parameter is the trie builder, which uses the structure information to assemble trie on the stack and compute its hash.
// `h` parameter is the hash collector, which is notified whenever branch node is constructed.
// `data` parameter specified if a hash or a binary string or an account should be emitted.
// `groups` parameter is the map of the stack. each element of the `groups` slice is a bitmask, one bit per element currently on the stack. Meaning - which children of given prefix have dbutils.HashedAccount records
// `hasTree` same as `groups`, but meaning - which children of given prefix have dbutils.TrieOfAccountsBucket record
// `hasHash` same as `groups`, but meaning - which children of given prefix are branch nodes and their hashes can be saved and used on next trie resolution.
// Whenever a `BRANCH` or `BRANCHHASH` opcode is emitted, the set of digits is taken from the corresponding `groups` item, which is
// then removed from the slice. This signifies the usage of the number of the stack items by the `BRANCH` or `BRANCHHASH` opcode.
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
// GenStructStepEx is extended to support optional generation of an Account Proof during trie_root.go CalcTrieRoot().
// The wrapper below calls it with nil/false defaults so that other callers do not need to be modified.
func GenStructStepEx(
retain func(prefix []byte) bool,
curr, succ []byte,
e structInfoReceiver,
h HashCollector2,
data GenStructStepData,
groups []uint16,
hasTree []uint16,
hasHash []uint16,
trace bool,
retainProof func(prefix []byte) *proofElement,
cutoff bool,
) ([]uint16, []uint16, []uint16, error) {
for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true {
var precExists = len(groups) > 0
// Calculate the prefix of the smallest prefix group containing curr
var precLen int
if len(groups) > 0 {
precLen = len(groups) - 1
}
succLen := prefixLen(succ, curr)
var maxLen int
if precLen > succLen {
maxLen = precLen
} else {
maxLen = succLen
}
if trace || maxLen >= len(curr) {
fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions)
}
// Add the digit immediately following the max common prefix and compute length of remainder length
extraDigit := curr[maxLen]
for maxLen >= len(groups) {
groups = append(groups, 0)
}
groups[maxLen] |= 1 << extraDigit
remainderStart := maxLen
if len(succ) > 0 || precExists {
remainderStart++
}
remainderLen := len(curr) - remainderStart
for remainderStart+remainderLen >= len(hasTree) {
hasTree = append(hasTree, 0)
hasHash = append(hasHash, 0)
}
//fmt.Printf("groups is now %x,%d,%b\n", extraDigit, maxLen, groups)
// retainIfProving will call setProofElement to a new proof element
// it is the caller's responsibility set the proof element to nil after the
// next element invocation. This function returns whether a proof is needed
// for this node.
retainIfProving := func(key []byte) bool {
if retainProof != nil {
if pe := retainProof(key); pe != nil {
e.setProofElement(pe)
return true
}
}
return false
}
if !buildExtensions {
switch v := data.(type) {
case *GenStructStepHashData:
if trace {
fmt.Printf("HashData before: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups)
}
if v.HasTree {
hasTree[len(curr)-1] |= 1 << curr[len(curr)-1] // keep track of existing records in DB
}
hasHash[len(curr)-1] |= 1 << curr[len(curr)-1] // register myself in parent bitmap
if trace {
fmt.Printf("HashData: %x, %t,%b,%b,%b\n", curr, v.HasTree, hasHash, hasTree, groups)
}
/* building a hash */
if err := e.hash(v.Hash[:]); err != nil {
return nil, nil, nil, err
}
buildExtensions = true
case *GenStructStepAccountData:
proving := retainIfProving(curr[:remainderStart])
if proving || retain(curr[:maxLen]) {
if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil {
return nil, nil, nil, err
}
if proving {
e.setProofElement(nil)
}
} else {
if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil {
return nil, nil, nil, err
}
}
case *GenStructStepLeafData:
/* building leafs */
proving := retainIfProving(curr[:remainderStart])
if proving || retain(curr[:maxLen]) {
if err := e.leaf(remainderLen, curr, v.Value); err != nil {
return nil, nil, nil, err
}
if proving {
e.setProofElement(nil)
}
} else {
if err := e.leafHash(remainderLen, curr, v.Value); err != nil {
return nil, nil, nil, err
}
}
default:
panic(fmt.Errorf("unknown data type: %T", data))
}
}
if buildExtensions {
if remainderLen > 0 {
if trace {
fmt.Printf("Extension before: %x->%x,%b, %b, %b\n", curr[:remainderStart], curr[remainderStart:remainderStart+remainderLen], hasHash, hasTree, groups)
}
// can't use hash of extension node
// but must propagate hasBranch bits to keep tracking all existing DB records
// groups bit also require propagation, but it's done automatically
from := remainderStart
if from == 0 {
from = 1
}
hasHash[from-1] &^= 1 << curr[from-1]
for i := from; i < remainderStart+remainderLen; i++ {
if 1<<curr[i]&hasTree[i] != 0 {
hasTree[from-1] |= 1 << curr[from-1]
}
if h != nil {
if err := h(curr[:i], 0, 0, 0, nil, nil); err != nil {
return nil, nil, nil, err
}
}
}
hasTree = hasTree[:from]
hasHash = hasHash[:from]
if trace {
fmt.Printf("Extension: %x, %b, %b, %b\n", curr[remainderStart:remainderStart+remainderLen], hasHash, hasTree, groups)
}
/* building extensions */
proving := retainIfProving(curr[:remainderStart])
if proving || retain(curr[:maxLen]) {
if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil {
return nil, nil, nil, err
}
if proving {
e.setProofElement(nil)
}
} else {
if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil {
return nil, nil, nil, err
}
}
}
}
// Check for the optional part
if precLen <= succLen && len(succ) > 0 {
return groups, hasTree, hasHash, nil
}
var usefulHashes []byte
if h != nil && (hasHash[maxLen] != 0 || hasTree[maxLen] != 0) { // top level must be in db
if trace {
fmt.Printf("why now: %x,%b,%b,%b\n", curr[:maxLen], hasHash, hasTree, groups)
}
usefulHashes = e.topHashes(curr[:maxLen], hasHash[maxLen], groups[maxLen])
if maxLen != 0 {
hasTree[maxLen-1] |= 1 << curr[maxLen-1] // register myself in parent bitmap
}
if maxLen > 1 {
if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, nil); err != nil {
return nil, nil, nil, err
}
}
}
// Close the immediately encompassing prefix group, if needed
if len(succ) > 0 || precExists {
if maxLen > 0 {
if trace {
fmt.Printf("Branch before: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups)
}
hasHash[maxLen-1] |= 1 << curr[maxLen-1]
if hasTree[maxLen] != 0 {
hasTree[maxLen-1] |= 1 << curr[maxLen-1]
}
if trace {
fmt.Printf("Branch: %x, %b, %b, %b\n", curr[:maxLen], hasHash, hasTree, groups)
}
}
if trace {
e.printTopHashes(curr[:maxLen], 0, groups[maxLen])
}
proving := retainIfProving(curr[:maxLen])
if proving || retain(curr[:maxLen]) {
if err := e.branch(groups[maxLen]); err != nil {
return nil, nil, nil, err
}
if proving {
e.setProofElement(nil)
}
} else {
if err := e.branchHash(groups[maxLen]); err != nil {
return nil, nil, nil, err
}
}
}
if h != nil {
send := maxLen == 0 && (hasTree[maxLen] != 0 || hasHash[maxLen] != 0) // account.root - store only if have useful info
send = send || (maxLen == 1 && groups[maxLen] != 0) // first level of trie_account - store in any case
if send {
if err := h(curr[:maxLen], groups[maxLen], hasTree[maxLen], hasHash[maxLen], usefulHashes, e.topHash()[1:]); err != nil {
return nil, nil, nil, err
}
}
}
groups = groups[:maxLen]
hasTree = hasTree[:maxLen]
hasHash = hasHash[:maxLen]
// Check the end of recursion
if precLen == 0 {
return groups, hasTree, hasHash, nil
}
// Identify preceding key for the buildExtensions invocation
curr = curr[:precLen]
for len(groups) > 0 && groups[len(groups)-1] == 0 {
groups = groups[:len(groups)-1]
}
}
return nil, nil, nil, nil
}
func GenStructStep(
retain func(prefix []byte) bool,
curr, succ []byte,
e structInfoReceiver,
h HashCollector2,
data GenStructStepData,
groups []uint16,
hasTree []uint16,
hasHash []uint16,
trace bool,
) ([]uint16, []uint16, []uint16, error) {
return GenStructStepEx(retain, curr, succ, e, h, data, groups, hasTree, hasHash, trace, nil, false)
}
func GenStructStepOld(
retain func(prefix []byte) bool,
curr, succ []byte,
e structInfoReceiver,
h HashCollector,
data GenStructStepData,
groups []uint16,
trace bool,
) ([]uint16, error) {
for precLen, buildExtensions := calcPrecLen(groups), false; precLen >= 0; precLen, buildExtensions = calcPrecLen(groups), true {
var precExists = len(groups) > 0
// Calculate the prefix of the smallest prefix group containing curr
var precLen int
if len(groups) > 0 {
precLen = len(groups) - 1
}
succLen := prefixLen(succ, curr)
var maxLen int
if precLen > succLen {
maxLen = precLen
} else {
maxLen = succLen
}
if trace || maxLen >= len(curr) {
fmt.Printf("curr: %x, succ: %x, maxLen %d, groups: %b, precLen: %d, succLen: %d, buildExtensions: %t\n", curr, succ, maxLen, groups, precLen, succLen, buildExtensions)
}
// Add the digit immediately following the max common prefix and compute length of remainder length
extraDigit := curr[maxLen]
for maxLen >= len(groups) {
groups = append(groups, 0)
}
groups[maxLen] |= 1 << extraDigit
//fmt.Printf("groups is now %b\n", groups)
remainderStart := maxLen
if len(succ) > 0 || precExists {
remainderStart++
}
remainderLen := len(curr) - remainderStart
if !buildExtensions {
switch v := data.(type) {
case *GenStructStepHashData:
/* building a hash */
if err := e.hash(v.Hash[:]); err != nil {
return nil, err
}
buildExtensions = true
case *GenStructStepAccountData:
if retain(curr[:maxLen]) {
if err := e.accountLeaf(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet, codeSizeUncached); err != nil {
return nil, err
}
} else {
if err := e.accountLeafHash(remainderLen, curr, &v.Balance, v.Nonce, v.Incarnation, v.FieldSet); err != nil {
return nil, err
}
}
case *GenStructStepLeafData:
/* building leafs */
if retain(curr[:maxLen]) {
if err := e.leaf(remainderLen, curr, v.Value); err != nil {
return nil, err
}
} else {
if err := e.leafHash(remainderLen, curr, v.Value); err != nil {
return nil, err
}
}
default:
panic(fmt.Errorf("unknown data type: %T", data))
}
}
if buildExtensions {
if remainderLen > 0 {
if trace {
fmt.Printf("Extension %x\n", curr[remainderStart:remainderStart+remainderLen])
}
/* building extensions */
if retain(curr[:maxLen]) {
if err := e.extension(curr[remainderStart : remainderStart+remainderLen]); err != nil {
return nil, err
}
} else {
if err := e.extensionHash(curr[remainderStart : remainderStart+remainderLen]); err != nil {
return nil, err
}
}
}
}
// Check for the optional part
if precLen <= succLen && len(succ) > 0 {
return groups, nil
}
// Close the immediately encompassing prefix group, if needed
if len(succ) > 0 || precExists {
if retain(curr[:maxLen]) {
if err := e.branch(groups[maxLen]); err != nil {
return nil, err
}
} else {
if err := e.branchHash(groups[maxLen]); err != nil {
return nil, err
}
}
if h != nil {
if err := h(curr[:maxLen], e.topHash()[1:]); err != nil {
return nil, err
}
}
}
groups = groups[:maxLen]
// Check the end of recursion
if precLen == 0 {
return groups, nil
}
// Identify preceding key for the buildExtensions invocation
curr = curr[:precLen]
for len(groups) > 0 && groups[len(groups)-1] == 0 {
groups = groups[:len(groups)-1]
}
}
return nil, nil
}