mirror of
https://gitlab.com/pulsechaincom/erigon-pulse.git
synced 2025-01-19 00:54:12 +00:00
122 lines
3.3 KiB
Go
122 lines
3.3 KiB
Go
/*
|
|
Copyright 2021 Erigon contributors
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package rlp
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"math/bits"
|
|
)
|
|
|
|
// General design:
|
|
// - rlp package doesn't manage memory - and Caller must ensure buffers are big enough.
|
|
// - no io.Writer, because it's incompatible with binary.BigEndian functions and Writer can't be used as temporary buffer
|
|
//
|
|
// Composition:
|
|
// - each Encode method does write to given buffer and return written len
|
|
// - each Parse accept position in payload and return new position
|
|
//
|
|
// General rules:
|
|
// - functions to calculate prefix len are fast (and pure). it's ok to call them multiple times during encoding of large object for readability.
|
|
// - rlp has 2 data types: List and String (bytes array), and low-level funcs are operate with this types.
|
|
// - but for convenience and performance - provided higher-level functions (for example for EncodeHash - for []byte of len 32)
|
|
// - functions to Parse (Decode) data - using data type as name (without any prefix): rlp.String(), rlp.List, rlp.U64(), rlp.U256()
|
|
//
|
|
|
|
func ListPrefixLen(dataLen int) int {
|
|
if dataLen >= 56 {
|
|
return 1 + (bits.Len64(uint64(dataLen))+7)/8
|
|
}
|
|
return 1
|
|
}
|
|
func EncodeListPrefix(dataLen int, to []byte) int {
|
|
if dataLen >= 56 {
|
|
_ = to[9]
|
|
beLen := (bits.Len64(uint64(dataLen)) + 7) / 8
|
|
binary.BigEndian.PutUint64(to[1:], uint64(dataLen))
|
|
to[8-beLen] = 247 + byte(beLen)
|
|
copy(to, to[8-beLen:9])
|
|
return 1 + beLen
|
|
}
|
|
to[0] = 192 + byte(dataLen)
|
|
return 1
|
|
}
|
|
func U64Len(i uint64) int {
|
|
if i > 128 {
|
|
return 1 + (bits.Len64(i)+7)/8
|
|
}
|
|
return 1
|
|
}
|
|
|
|
func EncodeU64(i uint64, to []byte) int {
|
|
if i > 128 {
|
|
beLen := (bits.Len64(i) + 7) / 8
|
|
to[0] = 128 + byte(beLen)
|
|
binary.BigEndian.PutUint64(to[1:], i)
|
|
copy(to[1:], to[1+8-beLen:1+8])
|
|
return 1 + beLen
|
|
}
|
|
if i == 0 {
|
|
to[0] = 128
|
|
return 1
|
|
}
|
|
to[0] = byte(i)
|
|
return 1
|
|
}
|
|
|
|
func EncodeString(s []byte, to []byte) {
|
|
switch {
|
|
case len(s) > 56:
|
|
beLen := (bits.Len(uint(len(s))) + 7) / 8
|
|
binary.BigEndian.PutUint64(to[1:], uint64(len(s)))
|
|
_ = to[beLen+len(s)]
|
|
|
|
to[8-beLen] = byte(beLen) + 183
|
|
copy(to, to[8-beLen:9])
|
|
copy(to[1+beLen:], s)
|
|
case len(s) == 0:
|
|
to[0] = 128
|
|
case len(s) == 1:
|
|
_ = to[1]
|
|
if s[0] >= 128 {
|
|
to[0] = 129
|
|
}
|
|
copy(to[1:], s)
|
|
default: // 1<s<56
|
|
_ = to[len(s)]
|
|
to[0] = byte(len(s)) + 128
|
|
copy(to[1:], s)
|
|
}
|
|
}
|
|
|
|
// EncodeHash assumes that `to` buffer is already 32bytes long
|
|
func EncodeHash(h, to []byte) int {
|
|
_ = to[32] // early bounds check to guarantee safety of writes below
|
|
to[0] = 128 + 32
|
|
copy(to[1:33], h[:32])
|
|
return 33
|
|
}
|
|
|
|
func EncodeHashes(hashes []byte, encodeBuf []byte) int {
|
|
pos := 0
|
|
hashesLen := len(hashes) / 32 * 33
|
|
pos += EncodeListPrefix(hashesLen, encodeBuf)
|
|
for i := 0; i < len(hashes); i += 32 {
|
|
pos += EncodeHash(hashes[i:], encodeBuf[pos:])
|
|
}
|
|
return pos
|
|
}
|