erigon-pulse/core/vm/evm.go

499 lines
19 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"sync/atomic"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon-lib/chain"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon/common/u256"
"github.com/ledgerwatch/erigon/core/vm/evmtypes"
"github.com/ledgerwatch/erigon/crypto"
"github.com/ledgerwatch/erigon/params"
)
// emptyCodeHash is used by create to ensure deployment is disallowed to already
// deployed contract addresses (relevant after the account abstraction).
var emptyCodeHash = crypto.Keccak256Hash(nil)
func (evm *EVM) precompile(addr libcommon.Address) (PrecompiledContract, bool) {
var precompiles map[libcommon.Address]PrecompiledContract
switch {
case evm.chainRules.IsMoran:
precompiles = PrecompiledContractsIsMoran
case evm.chainRules.IsNano:
precompiles = PrecompiledContractsNano
case evm.chainRules.IsBerlin:
precompiles = PrecompiledContractsBerlin
case evm.chainRules.IsIstanbul:
if evm.chainRules.IsParlia {
precompiles = PrecompiledContractsIstanbulForBSC
} else {
precompiles = PrecompiledContractsIstanbul
}
case evm.chainRules.IsByzantium:
precompiles = PrecompiledContractsByzantium
default:
precompiles = PrecompiledContractsHomestead
}
p, ok := precompiles[addr]
return p, ok
}
// run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter.
func run(evm *EVM, contract *Contract, input []byte, readOnly bool) ([]byte, error) {
return evm.interpreter.Run(contract, input, readOnly)
}
// EVM is the Ethereum Virtual Machine base object and provides
// the necessary tools to run a contract on the given state with
// the provided context. It should be noted that any error
// generated through any of the calls should be considered a
// revert-state-and-consume-all-gas operation, no checks on
// specific errors should ever be performed. The interpreter makes
// sure that any errors generated are to be considered faulty code.
//
// The EVM should never be reused and is not thread safe.
type EVM struct {
// Context provides auxiliary blockchain related information
context evmtypes.BlockContext
txContext evmtypes.TxContext
// IntraBlockState gives access to the underlying state
intraBlockState evmtypes.IntraBlockState
// chainConfig contains information about the current chain
chainConfig *chain.Config
// chain rules contains the chain rules for the current epoch
chainRules *chain.Rules
// virtual machine configuration options used to initialise the
// evm.
config Config
// global (to this context) ethereum virtual machine
// used throughout the execution of the tx.
interpreter Interpreter
// abort is used to abort the EVM calling operations
// NOTE: must be set atomically
abort int32
// callGasTemp holds the gas available for the current call. This is needed because the
// available gas is calculated in gasCall* according to the 63/64 rule and later
// applied in opCall*.
callGasTemp uint64
}
// NewEVM returns a new EVM. The returned EVM is not thread safe and should
// only ever be used *once*.
func NewEVM(blockCtx evmtypes.BlockContext, txCtx evmtypes.TxContext, state evmtypes.IntraBlockState, chainConfig *chain.Config, vmConfig Config) *EVM {
evm := &EVM{
context: blockCtx,
txContext: txCtx,
intraBlockState: state,
config: vmConfig,
chainConfig: chainConfig,
chainRules: chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Time),
}
evm.interpreter = NewEVMInterpreter(evm, vmConfig)
return evm
}
// Reset resets the EVM with a new transaction context.Reset
// This is not threadsafe and should only be done very cautiously.
func (evm *EVM) Reset(txCtx evmtypes.TxContext, ibs evmtypes.IntraBlockState) {
evm.txContext = txCtx
evm.intraBlockState = ibs
// ensure the evm is reset to be used again
atomic.StoreInt32(&evm.abort, 0)
}
func (evm *EVM) ResetBetweenBlocks(blockCtx evmtypes.BlockContext, txCtx evmtypes.TxContext, ibs evmtypes.IntraBlockState, vmConfig Config, chainRules *chain.Rules) {
evm.context = blockCtx
evm.txContext = txCtx
evm.intraBlockState = ibs
evm.config = vmConfig
evm.chainRules = chainRules
evm.interpreter = NewEVMInterpreter(evm, vmConfig)
// ensure the evm is reset to be used again
atomic.StoreInt32(&evm.abort, 0)
}
// Cancel cancels any running EVM operation. This may be called concurrently and
// it's safe to be called multiple times.
func (evm *EVM) Cancel() {
atomic.StoreInt32(&evm.abort, 1)
}
// Cancelled returns true if Cancel has been called
func (evm *EVM) Cancelled() bool {
return atomic.LoadInt32(&evm.abort) == 1
}
// CallGasTemp returns the callGasTemp for the EVM
func (evm *EVM) CallGasTemp() uint64 {
return evm.callGasTemp
}
// SetCallGasTemp sets the callGasTemp for the EVM
func (evm *EVM) SetCallGasTemp(gas uint64) {
evm.callGasTemp = gas
}
// Interpreter returns the current interpreter
func (evm *EVM) Interpreter() Interpreter {
return evm.interpreter
}
func (evm *EVM) call(typ OpCode, caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int, bailout bool) (ret []byte, leftOverGas uint64, err error) {
depth := evm.interpreter.Depth()
if evm.config.NoRecursion && depth > 0 {
return nil, gas, nil
}
// Fail if we're trying to execute above the call depth limit
if depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
if typ == CALL || typ == CALLCODE {
// Fail if we're trying to transfer more than the available balance
if !value.IsZero() && !evm.context.CanTransfer(evm.intraBlockState, caller.Address(), value) {
if !bailout {
return nil, gas, ErrInsufficientBalance
}
}
}
p, isPrecompile := evm.precompile(addr)
var code []byte
if !isPrecompile {
code = evm.intraBlockState.GetCode(addr)
}
snapshot := evm.intraBlockState.Snapshot()
if typ == CALL {
if !evm.intraBlockState.Exist(addr) {
if !isPrecompile && evm.chainRules.IsSpuriousDragon && value.IsZero() {
if evm.config.Debug {
v := value
if typ == STATICCALL {
v = nil
}
// Calling a non existing account, don't do anything, but ping the tracer
if depth == 0 {
evm.config.Tracer.CaptureStart(evm, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code)
evm.config.Tracer.CaptureEnd(ret, 0, nil)
} else {
evm.config.Tracer.CaptureEnter(typ, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code)
evm.config.Tracer.CaptureExit(ret, 0, nil)
}
}
return nil, gas, nil
}
evm.intraBlockState.CreateAccount(addr, false)
}
evm.context.Transfer(evm.intraBlockState, caller.Address(), addr, value, bailout)
} else if typ == STATICCALL {
// We do an AddBalance of zero here, just in order to trigger a touch.
// This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium,
// but is the correct thing to do and matters on other networks, in tests, and potential
// future scenarios
evm.intraBlockState.AddBalance(addr, u256.Num0)
}
if evm.config.Debug {
v := value
if typ == STATICCALL {
v = nil
}
if depth == 0 {
evm.config.Tracer.CaptureStart(evm, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code)
defer func(startGas uint64) { // Lazy evaluation of the parameters
evm.config.Tracer.CaptureEnd(ret, startGas-gas, err)
}(gas)
} else {
evm.config.Tracer.CaptureEnter(typ, caller.Address(), addr, isPrecompile, false /* create */, input, gas, v, code)
defer func(startGas uint64) { // Lazy evaluation of the parameters
evm.config.Tracer.CaptureExit(ret, startGas-gas, err)
}(gas)
}
}
// It is allowed to call precompiles, even via delegatecall
if isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else if len(code) == 0 {
// If the account has no code, we can abort here
// The depth-check is already done, and precompiles handled above
ret, err = nil, nil // gas is unchanged
} else {
// At this point, we use a copy of address. If we don't, the go compiler will
// leak the 'contract' to the outer scope, and make allocation for 'contract'
// even if the actual execution ends on RunPrecompiled above.
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
codeHash := evm.intraBlockState.GetCodeHash(addrCopy)
var contract *Contract
if typ == CALLCODE {
contract = NewContract(caller, AccountRef(caller.Address()), value, gas, evm.config.SkipAnalysis)
} else if typ == DELEGATECALL {
contract = NewContract(caller, AccountRef(caller.Address()), value, gas, evm.config.SkipAnalysis).AsDelegate()
} else {
contract = NewContract(caller, AccountRef(addrCopy), value, gas, evm.config.SkipAnalysis)
}
contract.SetCallCode(&addrCopy, codeHash, code)
readOnly := false
if typ == STATICCALL {
readOnly = true
}
ret, err = run(evm, contract, input, readOnly)
gas = contract.Gas
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in Homestead this also counts for code storage gas errors.
if err != nil || evm.config.RestoreState {
evm.intraBlockState.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
// TODO: consider clearing up unused snapshots:
//} else {
// evm.StateDB.DiscardSnapshot(snapshot)
}
return ret, gas, err
}
// Call executes the contract associated with the addr with the given input as
// parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int, bailout bool) (ret []byte, leftOverGas uint64, err error) {
return evm.call(CALL, caller, addr, input, gas, value, bailout)
}
// CallCode executes the contract associated with the addr with the given input
// as parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address'
// code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr libcommon.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
return evm.call(CALLCODE, caller, addr, input, gas, value, false)
}
// DelegateCall executes the contract associated with the addr with the given input
// as parameters. It reverses the state in case of an execution error.
//
// DelegateCall differs from CallCode in the sense that it executes the given address'
// code with the caller as context and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr libcommon.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
return evm.call(DELEGATECALL, caller, addr, input, gas, nil, false)
}
// StaticCall executes the contract associated with the addr with the given input
// as parameters while disallowing any modifications to the state during the call.
// Opcodes that attempt to perform such modifications will result in exceptions
// instead of performing the modifications.
func (evm *EVM) StaticCall(caller ContractRef, addr libcommon.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
return evm.call(STATICCALL, caller, addr, input, gas, new(uint256.Int), false)
}
type codeAndHash struct {
code []byte
hash libcommon.Hash
}
func (c *codeAndHash) Hash() libcommon.Hash {
if c.hash == (libcommon.Hash{}) {
c.hash = crypto.Keccak256Hash(c.code)
}
return c.hash
}
// create creates a new contract using code as deployment code.
func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address libcommon.Address, typ OpCode, incrementNonce bool) ([]byte, libcommon.Address, uint64, error) {
var ret []byte
var err error
var gasConsumption uint64
depth := evm.interpreter.Depth()
if evm.config.Debug {
if depth == 0 {
evm.config.Tracer.CaptureStart(evm, caller.Address(), address, false /* precompile */, true /* create */, codeAndHash.code, gas, value, nil)
defer func() {
evm.config.Tracer.CaptureEnd(ret, gasConsumption, err)
}()
} else {
evm.config.Tracer.CaptureEnter(typ, caller.Address(), address, false /* precompile */, true /* create */, codeAndHash.code, gas, value, nil)
defer func() {
evm.config.Tracer.CaptureExit(ret, gasConsumption, err)
}()
}
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if depth > int(params.CallCreateDepth) {
err = ErrDepth
return nil, libcommon.Address{}, gas, err
}
if !evm.context.CanTransfer(evm.intraBlockState, caller.Address(), value) {
err = ErrInsufficientBalance
return nil, libcommon.Address{}, gas, err
}
if incrementNonce {
nonce := evm.intraBlockState.GetNonce(caller.Address())
if nonce+1 < nonce {
err = ErrNonceUintOverflow
return nil, libcommon.Address{}, gas, err
}
evm.intraBlockState.SetNonce(caller.Address(), nonce+1)
}
// We add this to the access list _before_ taking a snapshot. Even if the creation fails,
// the access-list change should not be rolled back
if evm.chainRules.IsBerlin {
evm.intraBlockState.AddAddressToAccessList(address)
}
// Ensure there's no existing contract already at the designated address
contractHash := evm.intraBlockState.GetCodeHash(address)
if evm.intraBlockState.GetNonce(address) != 0 || (contractHash != (libcommon.Hash{}) && contractHash != emptyCodeHash) {
err = ErrContractAddressCollision
return nil, libcommon.Address{}, 0, err
}
// Create a new account on the state
snapshot := evm.intraBlockState.Snapshot()
evm.intraBlockState.CreateAccount(address, true)
if evm.chainRules.IsSpuriousDragon {
evm.intraBlockState.SetNonce(address, 1)
}
evm.context.Transfer(evm.intraBlockState, caller.Address(), address, value, false /* bailout */)
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(address), value, gas, evm.config.SkipAnalysis)
contract.SetCodeOptionalHash(&address, codeAndHash)
if evm.config.NoRecursion && depth > 0 {
return nil, address, gas, nil
}
ret, err = run(evm, contract, nil, false)
// EIP-170: Contract code size limit
if err == nil && evm.chainRules.IsSpuriousDragon && len(ret) > params.MaxCodeSize {
// Gnosis Chain prior to Shanghai didn't have EIP-170 enabled,
// but EIP-3860 (part of Shanghai) requires EIP-170.
if !evm.chainRules.IsAura || evm.config.HasEip3860(evm.chainRules) {
err = ErrMaxCodeSizeExceeded
}
}
// Reject code starting with 0xEF if EIP-3541 is enabled.
if err == nil && evm.chainRules.IsLondon && len(ret) >= 1 && ret[0] == 0xEF {
err = ErrInvalidCode
}
// if the contract creation ran successfully and no errors were returned
// calculate the gas required to store the code. If the code could not
// be stored due to not enough gas set an error and let it be handled
// by the error checking condition below.
if err == nil {
createDataGas := uint64(len(ret)) * params.CreateDataGas
if contract.UseGas(createDataGas) {
evm.intraBlockState.SetCode(address, ret)
} else if evm.chainRules.IsHomestead {
err = ErrCodeStoreOutOfGas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in homestead this also counts for code storage gas errors.
if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) {
evm.intraBlockState.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
contract.UseGas(contract.Gas)
}
}
// calculate gasConsumption for deferred captures
gasConsumption = gas - contract.Gas
return ret, address, contract.Gas, err
}
// Create creates a new contract using code as deployment code.
// DESCRIBED: docs/programmers_guide/guide.md#nonce
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int) (ret []byte, contractAddr libcommon.Address, leftOverGas uint64, err error) {
contractAddr = crypto.CreateAddress(caller.Address(), evm.intraBlockState.GetNonce(caller.Address()))
return evm.create(caller, &codeAndHash{code: code}, gas, endowment, contractAddr, CREATE, true /* incrementNonce */)
}
// Create2 creates a new contract using code as deployment code.
//
// The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:]
// instead of the usual sender-and-nonce-hash as the address where the contract is initialized at.
// DESCRIBED: docs/programmers_guide/guide.md#nonce
func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr libcommon.Address, leftOverGas uint64, err error) {
codeAndHash := &codeAndHash{code: code}
contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes())
return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2, true /* incrementNonce */)
}
// SysCreate is a special (system) contract creation methods for genesis constructors.
// Unlike the normal Create & Create2, it doesn't increment caller's nonce.
func (evm *EVM) SysCreate(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, contractAddr libcommon.Address) (ret []byte, leftOverGas uint64, err error) {
ret, _, leftOverGas, err = evm.create(caller, &codeAndHash{code: code}, gas, endowment, contractAddr, CREATE, false /* incrementNonce */)
return
}
// ChainConfig returns the environment's chain configuration
func (evm *EVM) Config() Config {
return evm.config
}
// ChainConfig returns the environment's chain configuration
func (evm *EVM) ChainConfig() *chain.Config {
return evm.chainConfig
}
// ChainRules returns the environment's chain rules
func (evm *EVM) ChainRules() *chain.Rules {
return evm.chainRules
}
// Context returns the EVM's BlockContext
func (evm *EVM) Context() evmtypes.BlockContext {
return evm.context
}
// TxContext returns the EVM's TxContext
func (evm *EVM) TxContext() evmtypes.TxContext {
return evm.txContext
}
// IntraBlockState returns the EVM's IntraBlockState
func (evm *EVM) IntraBlockState() evmtypes.IntraBlockState {
return evm.intraBlockState
}