Go to file
Felix Lange cac12843f7 p2p: new dial scheduler (#20592)
* p2p: new dial scheduler

This change replaces the peer-to-peer dial scheduler with a new and
improved implementation. The new code is better than the previous
implementation in two key aspects:

- The time between discovery of a node and dialing that node is
  significantly lower in the new version. The old dialState kept
  a buffer of nodes and launched a task to refill it whenever the buffer
  became empty. This worked well with the discovery interface we used to
  have, but doesn't really work with the new iterator-based discovery
  API.

- Selection of static dial candidates (created by Server.AddPeer or
  through static-nodes.json) performs much better for large amounts of
  static peers. Connections to static nodes are now limited like dynanic
  dials and can no longer overstep MaxPeers or the dial ratio.

* p2p/simulations/adapters: adapt to new NodeDialer interface

* p2p: re-add check for self in checkDial

* p2p: remove peersetCh

* p2p: allow static dials when discovery is disabled

* p2p: add test for dialScheduler.removeStatic

* p2p: remove blank line

* p2p: fix documentation of maxDialPeers

* p2p: change "ok" to "added" in static node log

* p2p: improve dialTask docs

Also increase log level for "Can't resolve node"

* p2p: ensure dial resolver is truly nil without discovery

* p2p: add "looking for peers" log message

* p2p: clean up Server.run comments

* p2p: fix maxDialedConns for maxpeers < dialRatio

Always allocate at least one dial slot unless dialing is disabled using
NoDial or MaxPeers == 0. Most importantly, this fixes MaxPeers == 1 to
dedicate the sole slot to dialing instead of listening.

* p2p: fix RemovePeer to disconnect the peer again

Also make RemovePeer synchronous and add a test.

* p2p: remove "Connection set up" log message

* p2p: clean up connection logging

We previously logged outgoing connection failures up to three times.

- in SetupConn() as "Setting up connection failed addr=..."
- in setupConn() with an error-specific message and "id=... addr=..."
- in dial() as "Dial error task=..."

This commit ensures a single log message is emitted per failure and adds
"id=... addr=... conn=..." everywhere (id= omitted when the ID isn't
known yet).

Also avoid printing a log message when a static dial fails but can't be
resolved because discv4 is disabled. The light client hit this case all
the time, increasing the message count to four lines per failed
connection.

* p2p: document that RemovePeer blocks
2020-02-27 17:21:20 +03:00
.circleci Update config.yml 2019-12-05 20:20:46 +00:00
.github .github: remove 'nonsense' from CODEOWNERS (#20329) 2019-12-03 13:43:48 +01:00
.golangci Refactor mining. Remove a few mining goroutines (#338) 2020-02-03 15:02:26 +03:00
accounts accounts: add walletsNoLock to avoid double read lock (#20655) 2020-02-27 17:21:20 +03:00
build build: upgrade golangci to 1.22.2 (#20566) 2020-01-30 13:36:30 +02:00
cmd cmd/geth retesteth: add eth_getBlockByHash (#20621) 2020-02-27 17:21:20 +03:00
common common/mclock: add NewTimer and Timer.Reset (#20634) 2020-02-27 17:21:20 +03:00
consensus Mining data races (#361) 2020-02-10 21:28:30 +07:00
console console, internal/jsre: use github.com/dop251/goja (#20470) 2020-02-27 17:20:36 +03:00
contracts/checkpointoracle les/checkpointoracle: move oracle into its own package (#20508) 2020-01-30 13:36:30 +02:00
core core, eth: implement eth/65 transaction fetcher 2020-02-27 17:21:20 +03:00
crypto build: use golangci-lint (#20295) 2019-12-03 13:38:59 +01:00
debug-web-ui Debug Web UI prototype (#362) 2020-02-09 13:31:52 +03:00
design adding some design assets including a new logo (#351) 2020-02-03 14:17:23 +00:00
docs Formal semantics: more instructions (#366) 2020-02-17 19:56:30 +03:00
eth core, eth: implement eth/65 transaction fetcher 2020-02-27 17:21:20 +03:00
ethclient Refactor mining. Remove a few mining goroutines (#338) 2020-02-03 15:02:26 +03:00
ethdb Trie: store self-destructed accounts (#355) 2020-02-12 13:52:59 +00:00
ethstats Apply Turbo-Geth modifications to go-ethereum codebase 2019-11-01 21:52:03 +01:00
event event, p2p/simulations/adapters: fix rare goroutine leaks (#20657) 2020-02-27 17:21:20 +03:00
graphql graphql: add transaction signature values (#20623) 2020-02-27 17:21:19 +03:00
internal internal/ethapi: return non-null "number" for pending block (#20616) 2020-02-27 17:21:19 +03:00
log log, internal/debug: delete RotatingFileHandler (#20586) 2020-02-27 17:20:36 +03:00
metrics metrics: fix issues reported by staticcheck (#20365) 2019-12-03 13:54:15 +01:00
miner Mining data races (#361) 2020-02-10 21:28:30 +07:00
node handle interruption signals, added context for client and server. Only problem that it's context to DB, but not to each server call - it means you can't use HTTP Request context here (or create new connection on each request). 2019-12-06 08:12:02 +07:00
p2p p2p: new dial scheduler (#20592) 2020-02-27 17:21:20 +03:00
params params: update bootnodes (#20610) 2020-02-27 17:20:36 +03:00
rlp rlp: fix staticcheck warnings (#20368) 2019-12-03 14:00:59 +01:00
rpc rpc: add error when call result parameter is not addressable (#20638) 2020-02-27 17:21:20 +03:00
signer signer: add bytes32 as valid primitive (#20609) 2020-02-27 17:21:20 +03:00
tests Refactor mining. Remove a few mining goroutines (#338) 2020-02-03 15:02:26 +03:00
trie trie: separate hashes and committer, collapse on commit 2020-02-27 17:20:36 +03:00
visual Continue comparison of genesis block with geth, expand long values (#223) 2019-12-06 12:03:12 +00:00
.dockerignore cmd, internal/build, docker: advertise commit date in unstable build versions (#19522) 2019-05-08 16:44:28 +03:00
.gitattributes .gitattributes: enable solidity highlighting on github (#16425) 2018-04-03 15:21:24 +02:00
.gitignore build: use golangci-lint (#20295) 2019-12-03 13:38:59 +01:00
.gitmodules tests: update tests and implement general state tests (#14734) 2017-07-11 13:49:14 +02:00
.golangci.yml build: upgrade golangci to 1.22.2 (#20566) 2020-01-30 13:36:30 +02:00
.mailmap all: update license information (#16089) 2018-02-14 13:49:11 +01:00
.travis.yml travis: bump Android builder to Go 1.13.6 2020-01-30 13:36:30 +02:00
appveyor.yml appveyor: bump Go to 1.13.6 on Windows 2020-01-30 13:36:30 +02:00
AUTHORS build: deduplicate same authors with different casing 2019-07-22 12:31:11 +03:00
circle.yml circleci: enable docker based hive testing 2016-07-15 16:07:34 +03:00
COPYING all: update license information 2015-07-07 14:12:44 +02:00
COPYING.LESSER all: update license information 2015-07-07 14:12:44 +02:00
Dockerfile travis, Dockerfile, appveyor: bump to Go 1.13 2019-09-12 11:09:11 +03:00
Dockerfile.alltools travis, Dockerfile, appveyor: bump to Go 1.13 2019-09-12 11:09:11 +03:00
fuzzbuzz.yaml tests/fuzzers: fuzzbuzz fuzzers for keystore, rlp, trie, whisper (#19910) 2020-01-30 13:36:30 +02:00
go.mod trie: make hasher parallel when number of changes are large (#20488) 2020-02-27 17:21:19 +03:00
go.sum trie: make hasher parallel when number of changes are large (#20488) 2020-02-27 17:21:19 +03:00
interfaces.go Apply Turbo-Geth modifications to go-ethereum codebase 2019-11-01 21:52:03 +01:00
Makefile Debug Web UI prototype (#362) 2020-02-09 13:31:52 +03:00
README.md README.md: update evm usage example (#20635) 2020-02-27 17:21:19 +03:00
SECURITY.md SECURITY.md: create security policy (#19666) 2019-06-06 14:40:52 +02:00
to-merge.txt les: log disconnect reason when light server is not synced (#20643) 2020-02-27 17:21:20 +03:00
UPGRADE_INFO.md prepare for merging 2020-02-27 17:20:35 +03:00

Turbo-Geth

Faster derivative of Go Ethereum.

GoDoc

CircleCI

Go Ethereum

Official Golang implementation of the Ethereum protocol.

Go Report Card Travis Discord

Automated builds are available for stable releases and the unstable master branch. Binary archives are published at https://geth.ethereum.org/downloads/.

Building the source

For prerequisites and detailed build instructions please read the Installation Instructions on the wiki.

Building geth requires both a Go (version 1.10 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make geth

or, to build the full suite of utilities:

make all

Executables

The go-ethereum project comes with several wrappers/executables found in the cmd directory.

Command Description
geth Our main Ethereum CLI client. It is the entry point into the Ethereum network (main-, test- or private net), capable of running as a full node (default), archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI Wiki page for command line options.
abigen Source code generator to convert Ethereum contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain Ethereum contract ABIs with expanded functionality if the contract bytecode is also available. However, it also accepts Solidity source files, making development much more streamlined. Please see our Native DApps wiki page for details.
bootnode Stripped down version of our Ethereum client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks.
evm Developer utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. evm --code 60ff60ff --debug run).
gethrpctest Developer utility tool to support our ethereum/rpc-test test suite which validates baseline conformity to the Ethereum JSON RPC specs. Please see the test suite's readme for details.
rlpdump Developer utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user-friendlier hierarchical representation (e.g. rlpdump --hex CE0183FFFFFFC4C304050583616263).
puppeth a CLI wizard that aids in creating a new Ethereum network.

Running geth

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page), but we've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own geth instance.

Full node on the main Ethereum network

By far the most common scenario is people wanting to simply interact with the Ethereum network: create accounts; transfer funds; deploy and interact with contracts. For this particular use-case the user doesn't care about years-old historical data, so we can fast-sync quickly to the current state of the network. To do so:

$ geth console

This command will:

  • Start geth in fast sync mode (default, can be changed with the --syncmode flag), causing it to download more data in exchange for avoiding processing the entire history of the Ethereum network, which is very CPU intensive.
  • Start up geth's built-in interactive JavaScript console, (via the trailing console subcommand) through which you can invoke all official web3 methods as well as geth's own management APIs. This tool is optional and if you leave it out you can always attach to an already running geth instance with geth attach.

A Full node on the Ethereum test network

Transitioning towards developers, if you'd like to play around with creating Ethereum contracts, you almost certainly would like to do that without any real money involved until you get the hang of the entire system. In other words, instead of attaching to the main network, you want to join the test network with your node, which is fully equivalent to the main network, but with play-Ether only.

$ geth --testnet console

The console subcommand has the exact same meaning as above and they are equally useful on the testnet too. Please see above for their explanations if you've skipped here.

Specifying the --testnet flag, however, will reconfigure your geth instance a bit:

  • Instead of using the default data directory (~/.ethereum on Linux for example), geth will nest itself one level deeper into a testnet subfolder (~/.ethereum/testnet on Linux). Note, on OSX and Linux this also means that attaching to a running testnet node requires the use of a custom endpoint since geth attach will try to attach to a production node endpoint by default. E.g. geth attach <datadir>/testnet/geth.ipc. Windows users are not affected by this.
  • Instead of connecting the main Ethereum network, the client will connect to the test network, which uses different P2P bootnodes, different network IDs and genesis states.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, geth will by default correctly separate the two networks and will not make any accounts available between them.

Full node on the Rinkeby test network

The above test network is a cross-client one based on the ethash proof-of-work consensus algorithm. As such, it has certain extra overhead and is more susceptible to reorganization attacks due to the network's low difficulty/security. Go Ethereum also supports connecting to a proof-of-authority based test network called Rinkeby (operated by members of the community). This network is lighter, more secure, but is only supported by go-ethereum.

$ geth --rinkeby console

Configuration

As an alternative to passing the numerous flags to the geth binary, you can also pass a configuration file via:

$ geth --config /path/to/your_config.toml

To get an idea how the file should look like you can use the dumpconfig subcommand to export your existing configuration:

$ geth --your-favourite-flags dumpconfig

Note: This works only with geth v1.6.0 and above.

Docker quick start

One of the quickest ways to get Ethereum up and running on your machine is by using Docker:

docker run -d --name ethereum-node -v /Users/alice/ethereum:/root \
           -p 8545:8545 -p 30303:30303 \
           ethereum/client-go

This will start geth in fast-sync mode with a DB memory allowance of 1GB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an alpine tag available for a slim version of the image.

Do not forget --rpcaddr 0.0.0.0, if you want to access RPC from other containers and/or hosts. By default, geth binds to the local interface and RPC endpoints is not accessible from the outside.

Programmatically interfacing geth nodes

As a developer, sooner rather than later you'll want to start interacting with geth and the Ethereum network via your own programs and not manually through the console. To aid this, geth has built-in support for a JSON-RPC based APIs (standard APIs and geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc Enable the HTTP-RPC server
  • --rpcaddr HTTP-RPC server listening interface (default: localhost)
  • --rpcport HTTP-RPC server listening port (default: 8545)
  • --rpcapi API's offered over the HTTP-RPC interface (default: eth,net,web3)
  • --rpccorsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --wsaddr WS-RPC server listening interface (default: localhost)
  • --wsport WS-RPC server listening port (default: 8546)
  • --wsapi API's offered over the WS-RPC interface (default: eth,net,web3)
  • --wsorigins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: admin,debug,eth,miner,net,personal,shh,txpool,web3)
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Ethereum nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

Operating a private network

Maintaining your own private network is more involved as a lot of configurations taken for granted in the official networks need to be manually set up.

Defining the private genesis state

First, you'll need to create the genesis state of your networks, which all nodes need to be aware of and agree upon. This consists of a small JSON file (e.g. call it genesis.json):

{
  "config": {
    "chainId": <arbitrary positive integer>,
    "homesteadBlock": 0,
    "eip150Block": 0,
    "eip155Block": 0,
    "eip158Block": 0,
    "byzantiumBlock": 0,
    "constantinopleBlock": 0,
    "petersburgBlock": 0
  },
  "alloc": {},
  "coinbase": "0x0000000000000000000000000000000000000000",
  "difficulty": "0x20000",
  "extraData": "",
  "gasLimit": "0x2fefd8",
  "nonce": "0x0000000000000042",
  "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000",
  "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000",
  "timestamp": "0x00"
}

The above fields should be fine for most purposes, although we'd recommend changing the nonce to some random value so you prevent unknown remote nodes from being able to connect to you. If you'd like to pre-fund some accounts for easier testing, create the accounts and populate the alloc field with their addresses.

"alloc": {
  "0x0000000000000000000000000000000000000001": {
    "balance": "111111111"
  },
  "0x0000000000000000000000000000000000000002": {
    "balance": "222222222"
  }
}

With the genesis state defined in the above JSON file, you'll need to initialize every geth node with it prior to starting it up to ensure all blockchain parameters are correctly set:

$ geth init path/to/genesis.json

Creating the rendezvous point

With all nodes that you want to run initialized to the desired genesis state, you'll need to start a bootstrap node that others can use to find each other in your network and/or over the internet. The clean way is to configure and run a dedicated bootnode:

$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key

With the bootnode online, it will display an enode URL that other nodes can use to connect to it and exchange peer information. Make sure to replace the displayed IP address information (most probably [::]) with your externally accessible IP to get the actual enode URL.

Note: You could also use a full-fledged geth node as a bootnode, but it's the less recommended way.

Starting up your member nodes

With the bootnode operational and externally reachable (you can try telnet <ip> <port> to ensure it's indeed reachable), start every subsequent geth node pointed to the bootnode for peer discovery via the --bootnodes flag. It will probably also be desirable to keep the data directory of your private network separated, so do also specify a custom --datadir flag.

$ geth --datadir=path/to/custom/data/folder --bootnodes=<bootnode-enode-url-from-above>

Note: Since your network will be completely cut off from the main and test networks, you'll also need to configure a miner to process transactions and create new blocks for you.

Running a private miner

Mining on the public Ethereum network is a complex task as it's only feasible using GPUs, requiring an OpenCL or CUDA enabled ethminer instance. For information on such a setup, please consult the EtherMining subreddit and the ethminer repository.

In a private network setting, however a single CPU miner instance is more than enough for practical purposes as it can produce a stable stream of blocks at the correct intervals without needing heavy resources (consider running on a single thread, no need for multiple ones either). To start a geth instance for mining, run it with all your usual flags, extended by:

$ geth <usual-flags> --mine --miner.threads=1 --etherbase=0x0000000000000000000000000000000000000000

Which will start mining blocks and transactions on a single CPU thread, crediting all proceedings to the account specified by --etherbase. You can further tune the mining by changing the default gas limit blocks converge to (--targetgaslimit) and the price transactions are accepted at (--gasprice).

Contribution

Thank you for considering to help out with the source code! We welcome contributions from anyone on the internet, and are grateful for even the smallest of fixes!

If you'd like to contribute to go-ethereum, please fork, fix, commit and send a pull request for the maintainers to review and merge into the main code base. If you wish to submit more complex changes though, please check up with the core devs first on our gitter channel to ensure those changes are in line with the general philosophy of the project and/or get some early feedback which can make both your efforts much lighter as well as our review and merge procedures quick and simple.

Please make sure your contributions adhere to our coding guidelines:

  • Code must adhere to the official Go formatting guidelines (i.e. uses gofmt).
  • Code must be documented adhering to the official Go commentary guidelines.
  • Pull requests need to be based on and opened against the master branch.
  • Commit messages should be prefixed with the package(s) they modify.
    • E.g. "eth, rpc: make trace configs optional"

Please see the Developers' Guide for more details on configuring your environment, and testing procedures, also see golang modules for managing project dependencies.

License

The go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The go-ethereum binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.